3D Face Reconstruction From Radar Images
- URL: http://arxiv.org/abs/2412.02403v2
- Date: Wed, 05 Feb 2025 12:26:37 GMT
- Title: 3D Face Reconstruction From Radar Images
- Authors: Valentin Braeutigam, Vanessa Wirth, Ingrid Ullmann, Christian Schüßler, Martin Vossiek, Matthias Berking, Bernhard Egger,
- Abstract summary: We propose a novel model-based method for 3D reconstruction from radar images.
We generate a dataset of synthetic radar images with a physics-based but non-differentiable radar.
This dataset is used to train a CNN-based encoder to estimate the parameters of a 3D morphable face model.
We extend our reconstruction in an Analysis-by-Synthesis fashion to a model-based autoencoder.
- Score: 4.368588934007947
- License:
- Abstract: The 3D reconstruction of faces gains wide attention in computer vision and is used in many fields of application, for example, animation, virtual reality, and even forensics. This work is motivated by monitoring patients in sleep laboratories. Due to their unique characteristics, sensors from the radar domain have advantages compared to optical sensors, namely penetration of electrically non-conductive materials and independence of light. These advantages of radar signals unlock new applications and require adaptation of 3D reconstruction frameworks. We propose a novel model-based method for 3D reconstruction from radar images. We generate a dataset of synthetic radar images with a physics-based but non-differentiable radar renderer. This dataset is used to train a CNN-based encoder to estimate the parameters of a 3D morphable face model. Whilst the encoder alone already leads to strong reconstructions of synthetic data, we extend our reconstruction in an Analysis-by-Synthesis fashion to a model-based autoencoder. This is enabled by learning the rendering process in the decoder, which acts as an object-specific differentiable radar renderer. Subsequently, the combination of both network parts is trained to minimize both, the loss of the parameters and the loss of the resulting reconstructed radar image. This leads to the additional benefit, that at test time the parameters can be further optimized by finetuning the autoencoder unsupervised on the image loss. We evaluated our framework on generated synthetic face images as well as on real radar images with 3D ground truth of four individuals.
Related papers
- Multi-view 3D surface reconstruction from SAR images by inverse rendering [4.964816143841665]
We propose a new inverse rendering method for 3D reconstruction from unconstrained Synthetic Aperture Radar (SAR) images.
Our method showcases the potential of exploiting geometric disparities in SAR images and paves the way for multi-sensor data fusion.
arXiv Detail & Related papers (2025-02-14T13:19:32Z) - Learning Radiance Fields from a Single Snapshot Compressive Image [18.548244681485922]
Snapshot Compressive Imaging (SCI) technique for recovering the underlying 3D scene structure from a single temporal compressed image.
We propose SCINeRF, in which we formulate the physical imaging process of SCI as part of the training of NeRF.
We further integrate the popular 3D Gaussian Splatting (3DGS) framework and propose SCISplat to improve 3D scene reconstruction quality and training/rendering speed.
arXiv Detail & Related papers (2024-12-27T06:40:44Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - Real-Time Radiance Fields for Single-Image Portrait View Synthesis [85.32826349697972]
We present a one-shot method to infer and render a 3D representation from a single unposed image in real-time.
Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering.
Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization.
arXiv Detail & Related papers (2023-05-03T17:56:01Z) - VoloGAN: Adversarial Domain Adaptation for Synthetic Depth Data [0.0]
We present VoloGAN, an adversarial domain adaptation network that translates synthetic RGB-D images of a high-quality 3D model of a person, into RGB-D images that could be generated with a consumer depth sensor.
This system is especially useful to generate high amount training data for single-view 3D reconstruction algorithms replicating the real-world capture conditions.
arXiv Detail & Related papers (2022-07-19T11:30:41Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - Differentiable Rendering for Synthetic Aperture Radar Imagery [0.0]
We propose an approach for differentiable rendering of Synthetic Aperture Radar (SAR) imagery, which combines methods from 3D computer graphics with neural rendering.
We demonstrate the approach on the inverse graphics problem of 3D Object Reconstruction from limited SAR imagery using high-fidelity simulated SAR data.
arXiv Detail & Related papers (2022-04-04T05:27:40Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - 3DRIMR: 3D Reconstruction and Imaging via mmWave Radar based on Deep
Learning [9.26903816093995]
mmWave radar has been shown as an effective sensing technique in low visibility, smoke, dusty, and dense fog environment.
We propose 3D Reconstruction and Imaging via mmWave Radar (3DRIMR), a deep learning based architecture that reconstructs 3D shape of an object in dense detailed point cloud format.
Our experiments have demonstrated 3DRIMR's effectiveness in reconstructing 3D objects, and its performance improvement over standard techniques.
arXiv Detail & Related papers (2021-08-05T21:24:57Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
We propose to recover the shape and motion of pedestrians from sensor readings captured in the wild by a self-driving car driving around.
We incorporate the reconstructed pedestrian assets bank in a realistic 3D simulation system.
We show that the simulated LiDAR data can be used to significantly reduce the amount of real-world data required for visual perception tasks.
arXiv Detail & Related papers (2020-11-16T17:16:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.