論文の概要: Data-Centric Epidemic Forecasting: A Survey
- arxiv url: http://arxiv.org/abs/2207.09370v1
- Date: Tue, 19 Jul 2022 16:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:40:24.040794
- Title: Data-Centric Epidemic Forecasting: A Survey
- Title(参考訳): データ中心の疫学予測:調査
- Authors: Alexander Rodr\'iguez, Harshavardhan Kamarthi, Pulak Agarwal, Javen
Ho, Mira Patel, Suchet Sapre, B. Aditya Prakash
- Abstract要約: この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
- 参考スコア(独自算出の注目度): 56.99209141838794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic has brought forth the importance of epidemic
forecasting for decision makers in multiple domains, ranging from public health
to the economy as a whole. While forecasting epidemic progression is frequently
conceptualized as being analogous to weather forecasting, however it has some
key differences and remains a non-trivial task. The spread of diseases is
subject to multiple confounding factors spanning human behavior, pathogen
dynamics, weather and environmental conditions. Research interest has been
fueled by the increased availability of rich data sources capturing previously
unobservable facets and also due to initiatives from government public health
and funding agencies. This has resulted, in particular, in a spate of work on
'data-centered' solutions which have shown potential in enhancing our
forecasting capabilities by leveraging non-traditional data sources as well as
recent innovations in AI and machine learning. This survey delves into various
data-driven methodological and practical advancements and introduces a
conceptual framework to navigate through them. First, we enumerate the large
number of epidemiological datasets and novel data streams that are relevant to
epidemic forecasting, capturing various factors like symptomatic online
surveys, retail and commerce, mobility, genomics data and more. Next, we
discuss methods and modeling paradigms focusing on the recent data-driven
statistical and deep-learning based methods as well as on the novel class of
hybrid models that combine domain knowledge of mechanistic models with the
effectiveness and flexibility of statistical approaches. We also discuss
experiences and challenges that arise in real-world deployment of these
forecasting systems including decision-making informed by forecasts. Finally,
we highlight some challenges and open problems found across the forecasting
pipeline.
- Abstract(参考訳): 新型コロナウイルス(covid-19)のパンデミックは、公衆衛生から経済全体に至るまで、複数のドメインにおける意思決定者に対する流行予測の重要性をもたらした。
流行の進行を予測することは、しばしば天気予報と類似しているとして概念化されるが、いくつかの重要な違いがあり、非自明な課題である。
病気の拡散は、人間の行動、病原体力学、天候、環境条件にまたがる複数の要因によって引き起こされる。
研究の関心は、これまで観測できなかったような面を捉えたリッチなデータソースの可用性の増加と、政府の公衆衛生と資金機関の主導によるものだ。
これは特に、AIや機械学習の最近の革新と同様に、従来のデータソースを活用することによって予測能力を向上する可能性を示した、‘データ中心’ソリューションに関する一連の研究の結果である。
この調査は、さまざまなデータ駆動型方法論と実践的な進歩を掘り下げ、それらをナビゲートするための概念的枠組みを紹介します。
まず、疫学上の大量のデータセットと、流行予測に関連する新しいデータストリームを列挙し、症状のオンラインサーベイ、小売商取引、モビリティ、ゲノムデータなど様々な要因を捉えます。
次に、最近のデータ駆動統計・ディープラーニングに基づく手法と、メカニカルモデルのドメイン知識と統計的アプローチの有効性と柔軟性を組み合わせた新しいハイブリッドモデルのクラスに焦点を当てた手法とモデリングパラダイムについて論じる。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
最後に,予測パイプライン全体に見られる課題と課題について紹介する。
関連論文リスト
- A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19 [0.6874745415692134]
本稿では,感染症予測の課題に対処する新しいアプローチを提案する。
本稿では,複数の情報源からの情報を活用するマルチラテラルアテンション強化型GRUモデルを提案する。
GRUフレームワークに注意機構を組み込むことで、我々のモデルはデータ内の複雑な関係や時間的依存を効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-08-26T06:31:53Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - PEMS: Pre-trained Epidemic Time-series Models [23.897701882327972]
事前学習型エピデミック時系列モデル(PEMS)を紹介する。
PEMSは、自己教師付き学習(SSL)タスクのセットとして事前トレーニングを定式化することにより、さまざまな病気の時系列データセットから学習する。
その結果、PEMは、さまざまな季節パターン、地理、感染メカニズムのデータセットをまたいださまざまなダウンストリーム時系列タスクにおいて、以前の最先端の手法よりも優れており、Covid-19パンデミックは、より少ないデータセットを使用して、より効率よく事前訓練されたデータに見られない。
論文 参考訳(メタデータ) (2023-11-14T01:40:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
感染性疾患は、世界中でヒトの病気や死亡の原因となっている。
感染拡大の予測は、利害関係者が目の前の状況に対処するのに役立つ。
論文 参考訳(メタデータ) (2022-06-21T19:31:25Z) - Digital Epidemiology: A review [0.0]
疫学は近年、計算モデルに基づく大きな進歩を目撃している。
ビッグデータとアプリによって、大規模な実データによるモデルの検証と精錬が可能になる。
エボラは、システム解を必要とするため、複雑性のレンズからアプローチする必要がある。
論文 参考訳(メタデータ) (2021-04-08T08:45:20Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。