Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems
- URL: http://arxiv.org/abs/2207.09374v1
- Date: Tue, 19 Jul 2022 16:20:37 GMT
- Title: Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems
- Authors: Silvan Mertes, Christina Karle, Tobias Huber, Katharina Weitz, Ruben
Schlagowski, Elisabeth Andr\'e
- Abstract summary: We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
- Score: 0.9542023122304099
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Explanation mechanisms from the field of Counterfactual Thinking are a
widely-used paradigm for Explainable Artificial Intelligence (XAI), as they
follow a natural way of reasoning that humans are familiar with. However, all
common approaches from this field are based on communicating information about
features or characteristics that are especially important for an AI's decision.
We argue that in order to fully understand a decision, not only knowledge about
relevant features is needed, but that the awareness of irrelevant information
also highly contributes to the creation of a user's mental model of an AI
system. Therefore, we introduce a new way of explaining AI systems. Our
approach, which we call Alterfactual Explanations, is based on showing an
alternative reality where irrelevant features of an AI's input are altered. By
doing so, the user directly sees which characteristics of the input data can
change arbitrarily without influencing the AI's decision. We evaluate our
approach in an extensive user study, revealing that it is able to significantly
contribute to the participants' understanding of an AI. We show that
alterfactual explanations are suited to convey an understanding of different
aspects of the AI's reasoning than established counterfactual explanation
methods.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers [11.200613814162185]
In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers.
We show for the first time that it is possible to apply this idea to black box models based on neural networks.
arXiv Detail & Related papers (2024-05-08T11:03:22Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it.
We use folk concepts of behavior as a framework of social attribution by the human explainee.
arXiv Detail & Related papers (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Knowledge-intensive Language Understanding for Explainable AI [9.541228711585886]
How AI-led decisions are made and what determining factors were included are crucial to understand.
It is critical to have human-centered explanations that are directly related to decision-making.
It is necessary to involve explicit domain knowledge that humans understand and use.
arXiv Detail & Related papers (2021-08-02T21:12:30Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
We compare and evaluate objective human decision accuracy without AI (control), with an AI prediction (no explanation) and AI prediction with explanation.
We find any kind of AI prediction tends to improve user decision accuracy, but no conclusive evidence that explainable AI has a meaningful impact.
Our results indicate that, at least in some situations, the "why" information provided in explainable AI may not enhance user decision-making.
arXiv Detail & Related papers (2020-06-19T15:46:13Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
We focus on the contributions that Human Intelligence can bring to eXplainable AI.
We call for a better interplay between Knowledge Representation and Reasoning, Social Sciences, Human Computation and Human-Machine Cooperation research.
arXiv Detail & Related papers (2020-05-27T10:47:15Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.