A general framework for scientifically inspired explanations in AI
- URL: http://arxiv.org/abs/2003.00749v1
- Date: Mon, 2 Mar 2020 10:32:21 GMT
- Title: A general framework for scientifically inspired explanations in AI
- Authors: David Tuckey, Alessandra Russo, Krysia Broda
- Abstract summary: We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
- Score: 76.48625630211943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability in AI is gaining attention in the computer science community
in response to the increasing success of deep learning and the important need
of justifying how such systems make predictions in life-critical applications.
The focus of explainability in AI has predominantly been on trying to gain
insights into how machine learning systems function by exploring relationships
between input data and predicted outcomes or by extracting simpler
interpretable models. Through literature surveys of philosophy and social
science, authors have highlighted the sharp difference between these generated
explanations and human-made explanations and claimed that current explanations
in AI do not take into account the complexity of human interaction to allow for
effective information passing to not-expert users. In this paper we instantiate
the concept of structure of scientific explanation as the theoretical
underpinning for a general framework in which explanations for AI systems can
be implemented. This framework aims to provide the tools to build a
"mental-model" of any AI system so that the interaction with the user can
provide information on demand and be closer to the nature of human-made
explanations. We illustrate how we can utilize this framework through two very
different examples: an artificial neural network and a Prolog solver and we
provide a possible implementation for both examples.
Related papers
- A Mechanistic Explanatory Strategy for XAI [0.0]
This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems.
According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making.
This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss.
arXiv Detail & Related papers (2024-11-02T18:30:32Z) - An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
Recent research in explainability has focused on explaining the workings of AI models or model explainability.
This thesis seeks to bridge some gaps between model and user-centered explainability.
arXiv Detail & Related papers (2024-10-23T02:03:49Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom)
We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation.
The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems.
arXiv Detail & Related papers (2024-01-29T02:28:39Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Designing explainable artificial intelligence with active inference: A
framework for transparent introspection and decision-making [0.0]
We discuss how active inference can be leveraged to design explainable AI systems.
We propose an architecture for explainable AI systems using active inference.
arXiv Detail & Related papers (2023-06-06T21:38:09Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - An Objective Metric for Explainable AI: How and Why to Estimate the
Degree of Explainability [3.04585143845864]
We present a new model-agnostic metric to measure the Degree of eXplainability of correct information in an objective way.
We designed a few experiments and a user-study on two realistic AI-based systems for healthcare and finance.
arXiv Detail & Related papers (2021-09-11T17:44:13Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.