Robust Multivariate Time-Series Forecasting: Adversarial Attacks and
Defense Mechanisms
- URL: http://arxiv.org/abs/2207.09572v3
- Date: Fri, 14 Apr 2023 04:15:27 GMT
- Title: Robust Multivariate Time-Series Forecasting: Adversarial Attacks and
Defense Mechanisms
- Authors: Linbo Liu, Youngsuk Park, Trong Nghia Hoang, Hilaf Hasson, Jun Huan
- Abstract summary: A new attack pattern negatively impacts the forecasting of a target time series.
We develop two defense strategies to mitigate the impact of such attack.
Experiments on real-world datasets confirm that our attack schemes are powerful.
- Score: 17.75675910162935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the threats of adversarial attack on multivariate
probabilistic forecasting models and viable defense mechanisms. Our studies
discover a new attack pattern that negatively impact the forecasting of a
target time series via making strategic, sparse (imperceptible) modifications
to the past observations of a small number of other time series. To mitigate
the impact of such attack, we have developed two defense strategies. First, we
extend a previously developed randomized smoothing technique in classification
to multivariate forecasting scenarios. Second, we develop an adversarial
training algorithm that learns to create adversarial examples and at the same
time optimizes the forecasting model to improve its robustness against such
adversarial simulation. Extensive experiments on real-world datasets confirm
that our attack schemes are powerful and our defense algorithms are more
effective compared with baseline defense mechanisms.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Targeted Attacks on Timeseries Forecasting [0.6719751155411076]
We propose a novel formulation of Directional, Amplitudinal, and Temporal targeted adversarial attacks on time series forecasting models.
These targeted attacks create a specific impact on the amplitude and direction of the output prediction.
Our experimental results show how targeted attacks on time series models are viable and are more powerful in terms of statistical similarity.
arXiv Detail & Related papers (2023-01-27T06:09:42Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - The Space of Adversarial Strategies [6.295859509997257]
Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade.
We propose a systematic approach to characterize worst-case (i.e., optimal) adversaries.
arXiv Detail & Related papers (2022-09-09T20:53:11Z) - Adversarial attacks against Bayesian forecasting dynamic models [1.8275108630751844]
AML studies how to manipulate data to fool inference engines.
In this paper, we propose a decision analysis based attacking strategy against Bayesian forecasting dynamic models.
arXiv Detail & Related papers (2021-10-20T21:23:45Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
In this paper, we investigate attacks and defenses for structured prediction tasks in NLP.
The structured output of structured prediction models is sensitive to small perturbations in the input.
We propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model.
arXiv Detail & Related papers (2020-10-04T15:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.