論文の概要: DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
Estimation
- arxiv url: http://arxiv.org/abs/2207.09920v1
- Date: Tue, 19 Jul 2022 01:25:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-21 12:51:07.018258
- Title: DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
Estimation
- Title(参考訳): DESCN:個別処理効果推定のための深部宇宙クロスネットワーク
- Authors: Kailiang Zhong, Fengtong Xiao, Yan Ren, Yaorong Liang, Wenqing Yao,
Xiaofeng Yang, and Ling Cen
- Abstract要約: 因果推論は、Eコマースや精密医療など様々な分野で広く応用されている。
本稿では,エンド・ツー・エンドの観点から治療効果をモデル化するためのDeep Entire Space Cross Networks (DESCN)を提案する。
- 参考スコア(独自算出の注目度): 4.797834241671471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal Inference has wide applications in various areas such as E-commerce
and precision medicine, and its performance heavily relies on the accurate
estimation of the Individual Treatment Effect (ITE). Conventionally, ITE is
predicted by modeling the treated and control response functions separately in
their individual sample spaces. However, such an approach usually encounters
two issues in practice, i.e. divergent distribution between treated and control
groups due to treatment bias, and significant sample imbalance of their
population sizes. This paper proposes Deep Entire Space Cross Networks (DESCN)
to model treatment effects from an end-to-end perspective. DESCN captures the
integrated information of the treatment propensity, the response, and the
hidden treatment effect through a cross network in a multi-task learning
manner. Our method jointly learns the treatment and response functions in the
entire sample space to avoid treatment bias and employs an intermediate pseudo
treatment effect prediction network to relieve sample imbalance. Extensive
experiments are conducted on a synthetic dataset and a large-scaled production
dataset from the E-commerce voucher distribution business. The results indicate
that DESCN can successfully enhance the accuracy of ITE estimation and improve
the uplift ranking performance. A sample of the production dataset and the
source code are released to facilitate future research in the community, which
is, to the best of our knowledge, the first large-scale public biased treatment
dataset for causal inference.
- Abstract(参考訳): 因果推論は電子商取引や精密医療など様々な分野で広く応用されており、その性能は個別処理効果(ITE)の正確な推定に大きく依存している。
従来、ITEは個々のサンプル空間で処理および制御応答関数を個別にモデル化することで予測される。
しかし、このようなアプローチは通常、治療バイアスによる治療群とコントロール群間の分散分布と、それらの集団サイズの顕著なサンプル不均衡という2つの問題に遭遇する。
本稿では,エンド・ツー・エンドの観点から治療効果をモデル化するためのDeep Entire Space Cross Networks (DESCN)を提案する。
DESCNは、マルチタスク学習方式で、治療の妥当性、応答、および隠れた治療効果の統合情報をクロスネットワークを介してキャプチャする。
本手法は, サンプル空間全体の処理機能と応答機能を協調的に学習し, 治療バイアスを回避し, 中間的擬似処理効果予測ネットワークを用いてサンプルの不均衡を緩和する。
総合的な実験は、Eコマースブーチャー流通ビジネスから合成データセットと大規模生産データセットを用いて行われる。
その結果,DESCNはITE推定精度を向上し,昇降ランキング性能を向上させることができた。
生産データセットとソースコードのサンプルは、コミュニティの将来的な研究を促進するためにリリースされ、これは私たちの知る限り、因果推論のための最初の大規模公共バイアス処理データセットである。
関連論文リスト
- Model-Based Inference and Experimental Design for Interference Using Partial Network Data [4.76518127830168]
本稿では,部分的ネットワークデータを用いた治療効果調整の評価と推定のためのフレームワークを提案する。
部分的ネットワークデータのみを用いて治療を割り当てる手順を説明する。
本研究では,インドとマラウイにおける情報拡散と観測グラフのシミュレーション実験によるアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-17T17:27:18Z) - Estimation of individual causal effects in network setup for multiple
treatments [4.53340898566495]
個別治療効果 (ITE) の推定問題について, 複数の治療と観察データを用いて検討した。
我々は、共同創設者の共有表現を学ぶために、Graph Convolutional Networks(GCN)を採用しています。
アプローチでは、個別のニューラルネットワークを使用して、各治療の潜在的な結果を推測する。
論文 参考訳(メタデータ) (2023-12-18T06:07:45Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
因果効果変動オートエンコーダ(CEVAE)をトレーニングし、観察処理データから結果を予測する。
均一処理変分オートエンコーダ (UTVAE) は, 重要サンプリングを用いて均一な処理分布を訓練する。
論文 参考訳(メタデータ) (2021-11-16T17:40:57Z) - Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer
Treatment-Effects from Observational Data [37.15330590319357]
既存のアプローチは、治療と管理のために観察された結果に深いモデルを適用することに依存している。
Deep Bayesian Active Learningは、不確実性の高い点を選択することによって、効率的なデータ取得のためのフレームワークを提供する。
本稿では,重なり合う領域に対するバイアスデータ取得という情報理論に基づく因果的ベイズ獲得機能を紹介する。
論文 参考訳(メタデータ) (2021-11-03T15:11:39Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Regret Minimization for Causal Inference on Large Treatment Space [21.957539112375496]
本稿では,偏りのある観測データから偏りのある表現を抽出するネットワークアーキテクチャと正規化器を提案する。
提案した損失は、アクションが個々のターゲットに対して比較的良いかどうかの分類誤差を最小限に抑える。
論文 参考訳(メタデータ) (2020-06-10T02:19:48Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。