Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors
- URL: http://arxiv.org/abs/2404.12120v2
- Date: Sun, 30 Jun 2024 15:39:53 GMT
- Title: Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors
- Authors: Raz Lapid, Almog Dubin, Moshe Sipper,
- Abstract summary: An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly.
Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy.
Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents RADAR-Robust Adversarial Detection via Adversarial Retraining-an approach designed to enhance the robustness of adversarial detectors against adaptive attacks, while maintaining classifier performance. An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly. Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy. During the training phase, we integrate into the dataset adversarial examples, which were optimized to fool both the classifier and the adversarial detector, enabling the adversarial detector to learn and adapt to potential attack scenarios. Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks -- without sacrificing clean accuracy.
Related papers
- Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning [26.403625710805418]
Advanced Persistent Threats (APTs) represent sophisticated cyberattacks characterized by their ability to remain undetected for extended periods.
We propose Slot, an advanced APT detection approach based on provenance graphs and graph reinforcement learning.
We show Slot's outstanding accuracy, efficiency, adaptability, and robustness in APT detection, with most metrics surpassing state-of-the-art methods.
arXiv Detail & Related papers (2024-10-23T14:28:32Z) - Robust Adversarial Attacks Detection for Deep Learning based Relative
Pose Estimation for Space Rendezvous [8.191688622709444]
We propose a novel approach for adversarial attack detection for deep neural network-based relative pose estimation schemes.
The proposed adversarial attack detector achieves a detection accuracy of 99.21%.
arXiv Detail & Related papers (2023-11-10T11:07:31Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Attack-Agnostic Adversarial Detection [13.268960384729088]
We quantify the statistical deviation caused by adversarial agnostics in two aspects.
We show that our method can achieve an overall ROC AUC of 94.9%, 89.7%, and 94.6% on CIFAR10, CIFAR100, and SVHN, respectively, and has comparable performance to adversarial detectors trained with adversarial examples on most of the attacks.
arXiv Detail & Related papers (2022-06-01T13:41:40Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
This work proposes to defend ASV systems against adversarial attacks with a separate detection network.
A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples.
arXiv Detail & Related papers (2020-06-11T04:31:56Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
The detector almost completely neutralises powerful attacks like Carlini-Wagner or SLIDE on MNIST and Fashion-MNIST.
We show that our method is still able to detect the adversarial examples in the case of a white-box attack where the attacker has full knowledge of both the model and the defence.
arXiv Detail & Related papers (2020-02-21T15:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.