Efficient Search of Multiple Neural Architectures with Different
Complexities via Importance Sampling
- URL: http://arxiv.org/abs/2207.10334v1
- Date: Thu, 21 Jul 2022 07:06:03 GMT
- Title: Efficient Search of Multiple Neural Architectures with Different
Complexities via Importance Sampling
- Authors: Yuhei Noda, Shota Saito, Shinichi Shirakawa
- Abstract summary: This study focuses on the architecture complexity-aware one-shot NAS that optimize the objective function composed of the weighted sum of two metrics.
The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets.
- Score: 3.759936323189417
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural architecture search (NAS) aims to automate architecture design
processes and improve the performance of deep neural networks. Platform-aware
NAS methods consider both performance and complexity and can find
well-performing architectures with low computational resources. Although
ordinary NAS methods result in tremendous computational costs owing to the
repetition of model training, one-shot NAS, which trains the weights of a
supernetwork containing all candidate architectures only once during the search
process, has been reported to result in a lower search cost. This study focuses
on the architecture complexity-aware one-shot NAS that optimizes the objective
function composed of the weighted sum of two metrics, such as the predictive
performance and number of parameters. In existing methods, the architecture
search process must be run multiple times with different coefficients of the
weighted sum to obtain multiple architectures with different complexities. This
study aims at reducing the search cost associated with finding multiple
architectures. The proposed method uses multiple distributions to generate
architectures with different complexities and updates each distribution using
the samples obtained from multiple distributions based on importance sampling.
The proposed method allows us to obtain multiple architectures with different
complexities in a single architecture search, resulting in reducing the search
cost. The proposed method is applied to the architecture search of
convolutional neural networks on the CIAFR-10 and ImageNet datasets.
Consequently, compared with baseline methods, the proposed method finds
multiple architectures with varying complexities while requiring less
computational effort.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Pareto-aware Neural Architecture Generation for Diverse Computational
Budgets [94.27982238384847]
Existing methods often perform an independent architecture search process for each target budget.
We propose a Neural Architecture Generator (PNAG) which only needs to be trained once and dynamically produces the optimal architecture for any given budget via inference.
Such a joint search algorithm not only greatly reduces the overall search cost but also improves the results.
arXiv Detail & Related papers (2022-10-14T08:30:59Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
We propose a framework to optimize for both task performance and "introspectability," a surrogate metric for aspects of interpretability.
We demonstrate that jointly optimizing for task error and introspectability leads to more disentangled and debuggable architectures that perform within error.
arXiv Detail & Related papers (2021-12-16T05:50:55Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - Enhanced Gradient for Differentiable Architecture Search [17.431144144044968]
We propose a neural network architecture search algorithm aiming to simultaneously improve network performance and reduce network complexity.
The proposed framework automatically builds the network architecture at two stages: block-level search and network-level search.
Experiment results demonstrate that our method outperforms all evaluated hand-crafted networks in image classification.
arXiv Detail & Related papers (2021-03-23T13:27:24Z) - Multi-Objective Neural Architecture Search Based on Diverse Structures
and Adaptive Recommendation [4.595675084986132]
The search space of neural architecture search (NAS) for convolutional neural network (CNN) is huge.
We propose MoARR algorithm, which utilizes the existing research results and historical information to quickly find architectures that are both lightweight and accurate.
Experimental results show that our MoARR can achieve a powerful and lightweight model (with 1.9% error rate and 2.3M parameters) on CIFAR-10 in 6 GPU hours.
arXiv Detail & Related papers (2020-07-06T13:42:33Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z) - RC-DARTS: Resource Constrained Differentiable Architecture Search [162.7199952019152]
We propose the resource constrained differentiable architecture search (RC-DARTS) method to learn architectures that are significantly smaller and faster.
We show that the RC-DARTS method learns lightweight neural architectures which have smaller model size and lower computational complexity.
arXiv Detail & Related papers (2019-12-30T05:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.