Ability of error correlations to improve the performance of variational
quantum algorithms
- URL: http://arxiv.org/abs/2207.10622v2
- Date: Fri, 5 May 2023 08:05:25 GMT
- Title: Ability of error correlations to improve the performance of variational
quantum algorithms
- Authors: Joris Kattem\"olle and Guido Burkard
- Abstract summary: We introduce a model for both spatially and temporally (non-Markovian) correlated errors based on classical environmental fluctuators.
We find evidence that the performance of QAOA improves as the correlation time or correlation length of the noise is increased at fixed local error probabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) has the potential of
providing a useful quantum advantage on noisy intermediate-scale quantum (NISQ)
devices. The effects of uncorrelated noise on variational quantum algorithms
such as QAOA have been studied intensively. Recent experimental results,
however, show that the errors impacting NISQ devices are significantly
correlated. We introduce a model for both spatially and temporally
(non-Markovian) correlated errors based on classical environmental fluctuators.
The model allows for the independent variation of the marginalized
spacetime-local error probability and the correlation strength. Using this
model, we study the effects of correlated stochastic noise on QAOA. We find
evidence that the performance of QAOA improves as the correlation time or
correlation length of the noise is increased at fixed local error
probabilities. This shows that noise correlations in themselves need not be
detrimental for NISQ algorithms such as QAOA.
Related papers
- Detrimental non-Markovian errors for surface code memory [0.5490714603843316]
We study the structure of non-Markovian correlated errors and their impact on surface code memory performance.
Our analysis shows that while not all temporally correlated structures are detrimental, certain structures, particularly multi-time "streaky" correlations, can severely degrade logical error rate scaling.
arXiv Detail & Related papers (2024-10-31T09:52:21Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Universal noise-precision relations in variational quantum algorithms [0.6946929968559495]
Variational quantum algorithms (VQAs) are expected to become a practical application of near-term noisy quantum computers.
We propose analytic estimations of the error in the cost function of VQAs due to the noise.
We show how the Hessian of the cost function, the spectrum of the target operator, and the geometry of the ansatz affect the sensitivity to the noise.
arXiv Detail & Related papers (2021-06-07T07:37:54Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Noise correlation and success probability in coherent Ising machines [0.0]
We study noise correlations in coherent Ising machines (CIMs) with optical delay-line, measurement feedback, and mean-field couplings.
The results indicate that the success probability is more directly related to the normalized correlation function rather than entanglement or quantum discord.
arXiv Detail & Related papers (2020-09-22T05:44:30Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.