論文の概要: Multiple Robust Learning for Recommendation
- arxiv url: http://arxiv.org/abs/2207.10796v1
- Date: Sat, 9 Jul 2022 13:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:37:29.085283
- Title: Multiple Robust Learning for Recommendation
- Title(参考訳): 推薦のための複数ロバスト学習
- Authors: Haoxuan Li, Quanyu Dai, Yuru Li, Yan Lyu, Zhenhua Dong, Peng Wu,
Xiao-Hua Zhou
- Abstract要約: 推薦システムでは、収集されたデータに様々なバイアスが存在することが一般的な問題である。
本稿では,不偏性を実現するために,複数の候補計算モデルと確率モデルを利用するマルチロバスト (MR) 推定器を提案する。
- 参考スコア(独自算出の注目度): 13.06593469196849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recommender systems, a common problem is the presence of various biases in
the collected data, which deteriorates the generalization ability of the
recommendation models and leads to inaccurate predictions. Doubly robust (DR)
learning has been studied in many tasks in RS, with the advantage that unbiased
learning can be achieved when either a single imputation or a single propensity
model is accurate. In this paper, we propose a multiple robust (MR) estimator
that can take the advantage of multiple candidate imputation and propensity
models to achieve unbiasedness. Specifically, the MR estimator is unbiased when
any of the imputation or propensity models, or a linear combination of these
models is accurate. Theoretical analysis shows that the proposed MR is an
enhanced version of DR when only having a single imputation and propensity
model, and has a smaller bias. Inspired by the generalization error bound of
MR, we further propose a novel multiple robust learning approach with
stabilization. We conduct extensive experiments on real-world and
semi-synthetic datasets, which demonstrates the superiority of the proposed
approach over state-of-the-art methods.
- Abstract(参考訳): レコメンデーションシステムでは、収集されたデータに様々なバイアスが存在することが一般的な問題であり、レコメンデーションモデルの一般化能力を低下させ、不正確な予測をもたらす。
二重頑健な(DR)学習は、RSの多くのタスクにおいて研究されており、単一の命令または単一の確率モデルが正確である場合に、偏りのない学習が達成できるという利点がある。
本稿では,不偏性を実現するために,複数の候補計算モデルと確率モデルの利点を生かしうるマルチロバスト(MR)推定器を提案する。
特に、MR推定器は、インプットモデルや確率モデルのいずれかが正確である場合、あるいはこれらのモデルの線形結合が正確である場合、偏りがない。
理論的解析により,提案するmrは1つのインプテーションモデルとプロペンシティモデルのみを持つ場合のdrの強化版であり,バイアスが小さいことが示された。
mrの一般化誤差境界に着想を得て,安定化を伴う新しい多重ロバスト学習手法を提案する。
実世界および半合成データセットに関する広範な実験を行い、提案手法が最先端手法よりも優れていることを示す。
関連論文リスト
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
収集データ中のMNARとOMEから予測モデルの非バイアス学習に対する交差点脅威について検討する。
まず, OME-EIB, OME-IPS, OME-DR推定器を設計する。
論文 参考訳(メタデータ) (2024-06-24T23:42:18Z) - Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Curriculum-scheduled Knowledge Distillation from Multiple Pre-trained Teachers for Multi-domain Sequential Recommendation [102.91236882045021]
現実世界のシステムにおいて、様々な事前学習されたレコメンデーションモデルを効率的に利用する方法について検討することが不可欠である。
多分野連続的な推薦のために,複数の事前学習教師によるカリキュラムスケジューリング型知識蒸留を提案する。
CKD-MDSRは、複数の教師モデルとして異なるPRMの利点を最大限に活用し、小学生推薦モデルを強化している。
論文 参考訳(メタデータ) (2024-01-01T15:57:15Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - A Generalized Doubly Robust Learning Framework for Debiasing Post-Click
Conversion Rate Prediction [23.340584290411208]
クリック後変換率(CVR)予測は、ユーザの興味を見つけ、プラットフォーム収益を増やすための重要なタスクである。
現在、Doublely robust(DR)学習アプローチは、CVR予測を損なうための最先端のパフォーマンスを実現している。
本稿では,DR損失のバイアスを制御し,バイアスと分散を柔軟にバランスするDR-BIASとDR-MSEの2つの新しいDR手法を提案する。
論文 参考訳(メタデータ) (2022-11-12T15:09:23Z) - MRCLens: an MRC Dataset Bias Detection Toolkit [82.44296974850639]
MRCLensは,ユーザがフルモデルをトレーニングする前に,バイアスが存在するかどうかを検出するツールキットである。
ツールキットの導入の便宜のために,MDCにおける共通バイアスの分類も提供する。
論文 参考訳(メタデータ) (2022-07-18T21:05:39Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random [6.563595953273317]
推薦システムでは、受信したフィードバックデータが常にランダムではない(MNAR)。
本稿では,エラー計算(EIB)法と二重頑健(DR)法の両方の利点を効果的に捉えるbf DR-TMLEを提案する。
我々はまた、bf DR-TMLE-TLと呼ばれるDR-TMLEのための新しいRCT非協調目標学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-19T06:48:50Z) - Enhanced Doubly Robust Learning for Debiasing Post-click Conversion Rate
Estimation [29.27760413892272]
クリック後の変換は、ユーザの好みを示す強いシグナルであり、レコメンデーションシステムを構築する上で有益である。
現在、ほとんどの既存の手法は、対実学習を利用してレコメンデーションシステムを破壊している。
本稿では,MRDR推定のための新しい二重学習手法を提案し,誤差計算を一般的なCVR推定に変換する。
論文 参考訳(メタデータ) (2021-05-28T06:59:49Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。