NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS
Attack Detection in IoT Domains
- URL: http://arxiv.org/abs/2207.10803v1
- Date: Fri, 15 Jul 2022 14:09:08 GMT
- Title: NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS
Attack Detection in IoT Domains
- Authors: Kumar Saurabh, Tanuj Kumar, Uphar Singh, O.P. Vyas, Rahamatullah
Khondoker
- Abstract summary: This study proposes NFDLM, a lightweight and optimised Artificial Neural Network (ANN) based Distributed Denial of Services (DDoS) attack detection framework.
Overall, the detection performance achieves approximately 99% accuracy for the detection of attacks from botnets.
- Score: 0.13999481573773068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent years, Distributed Denial of Service (DDoS) attacks on Internet
of Things (IoT) devices have become one of the prime concerns to Internet users
around the world. One of the sources of the attacks on IoT ecosystems are
botnets. Intruders force IoT devices to become unavailable for its legitimate
users by sending large number of messages within a short interval. This study
proposes NFDLM, a lightweight and optimised Artificial Neural Network (ANN)
based Distributed Denial of Services (DDoS) attack detection framework with
mutual correlation as feature selection method which produces a superior result
when compared with Long Short Term Memory (LSTM) and simple ANN. Overall, the
detection performance achieves approximately 99\% accuracy for the detection of
attacks from botnets. In this work, we have designed and compared four
different models where two are based on ANN and the other two are based on LSTM
to detect the attack types of DDoS.
Related papers
- Towards Efficient Machine Learning Method for IoT DDoS Attack Detection [0.0]
DDoS attacks conducted with IoT devices can cause a significant downtime of applications running on the Internet.
We propose a hybrid feature selection algorithm that selects only the most useful features and passes those features into an XGBoost model.
Our model attains an accuracy of 99.993% on the CIC IDS 2017 dataset and a recall of 97.64 % on the CIC IoT 2023 dataset.
arXiv Detail & Related papers (2024-08-16T09:41:54Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MONDEO: Multistage Botnet Detection [2.259031129687683]
MONDEO is a multistage mechanism to detect DNS-based botnet malware.
It comprises four detection stages: Blacklisting/Whitelisting, Query rate analysis, DGA analysis, and Machine learning evaluation.
MONDEO was tested against several datasets to measure its efficiency and performance.
arXiv Detail & Related papers (2023-08-31T09:12:30Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
arXiv Detail & Related papers (2022-11-18T07:27:07Z) - Collaborative adversary nodes learning on the logs of IoT devices in an
IoT network [0.0]
We propose an improved approach for IoT security from data perspective.
The Adversary Learning (AdLIoTLog) model is proposed using Recurrent Neural Network (RNN)
Our results show that the predicting performance of the AdLIoTLog model trained by our method degrades by 3-4% in the presence of attack.
arXiv Detail & Related papers (2021-12-22T02:56:22Z) - Modelling DDoS Attacks in IoT Networks using Machine Learning [21.812642970826563]
TCP-specific attacks are one of the most plausible tools that attackers can use on Cyber-Physical Systems.
This study compares the effectiveness of supervised, unsupervised, and semi-supervised machine learning algorithms for detecting DDoS attacks in CPS-IoT.
arXiv Detail & Related papers (2021-12-10T12:09:26Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.