Intrusion Detection in Internet of Things using Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2211.10062v1
- Date: Fri, 18 Nov 2022 07:27:07 GMT
- Title: Intrusion Detection in Internet of Things using Convolutional Neural
Networks
- Authors: Martin Kodys, Zhi Lu, Kar Wai Fok, Vrizlynn L. L. Thing
- Abstract summary: We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
- Score: 4.718295605140562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Internet of Things (IoT) has become a popular paradigm to fulfil needs of the
industry such as asset tracking, resource monitoring and automation. As
security mechanisms are often neglected during the deployment of IoT devices,
they are more easily attacked by complicated and large volume intrusion attacks
using advanced techniques. Artificial Intelligence (AI) has been used by the
cyber security community in the past decade to automatically identify such
attacks. However, deep learning methods have yet to be extensively explored for
Intrusion Detection Systems (IDS) specifically for IoT. Most recent works are
based on time sequential models like LSTM and there is short of research in
CNNs as they are not naturally suited for this problem. In this article, we
propose a novel solution to the intrusion attacks against IoT devices using
CNNs. The data is encoded as the convolutional operations to capture the
patterns from the sensors data along time that are useful for attacks detection
by CNNs. The proposed method is integrated with two classical CNNs: ResNet and
EfficientNet, where the detection performance is evaluated. The experimental
results show significant improvement in both true positive rate and false
positive rate compared to the baseline using LSTM.
Related papers
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
arXiv Detail & Related papers (2024-10-29T09:09:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Collaborative adversary nodes learning on the logs of IoT devices in an
IoT network [0.0]
We propose an improved approach for IoT security from data perspective.
The Adversary Learning (AdLIoTLog) model is proposed using Recurrent Neural Network (RNN)
Our results show that the predicting performance of the AdLIoTLog model trained by our method degrades by 3-4% in the presence of attack.
arXiv Detail & Related papers (2021-12-22T02:56:22Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - Pelican: A Deep Residual Network for Network Intrusion Detection [7.562843347215287]
We propose a deep neural network, Pelican, that is built upon specially-designed residual blocks.
Pelican can achieve a high attack detection performance while keeping a much low false alarm rate.
arXiv Detail & Related papers (2020-01-19T05:07:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.