論文の概要: Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction
- arxiv url: http://arxiv.org/abs/2207.10830v1
- Date: Fri, 22 Jul 2022 00:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 13:27:34.770059
- Title: Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction
- Title(参考訳): 交通予測のための自動拡張時空間同期グラフモデリング
- Authors: Guangyin Jin, Fuxian Li, Jinlei Zhang, Mudan Wang, Jincai Huang
- Abstract要約: 本稿では,トラフィック予測のための自動拡張時間同期グラフネットワーク予測であるAuto-DSTSを提案する。
具体的には,短期および長期の相関関係を捉えるための自動拡張時間時間グラフ (Auto-DSTS) モジュールを提案する。
我々のモデルは最先端の手法と比較して約10%改善できる。
- 参考スコア(独自算出の注目度): 1.6449390849183363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate traffic prediction is a challenging task in intelligent
transportation systems because of the complex spatio-temporal dependencies in
transportation networks. Many existing works utilize sophisticated temporal
modeling approaches to incorporate with graph convolution networks (GCNs) for
capturing short-term and long-term spatio-temporal dependencies. However, these
separated modules with complicated designs could restrict effectiveness and
efficiency of spatio-temporal representation learning. Furthermore, most
previous works adopt the fixed graph construction methods to characterize the
global spatio-temporal relations, which limits the learning capability of the
model for different time periods and even different data scenarios. To overcome
these limitations, we propose an automated dilated spatio-temporal synchronous
graph network, named Auto-DSTSGN for traffic prediction. Specifically, we
design an automated dilated spatio-temporal synchronous graph (Auto-DSTSG)
module to capture the short-term and long-term spatio-temporal correlations by
stacking deeper layers with dilation factors in an increasing order. Further,
we propose a graph structure search approach to automatically construct the
spatio-temporal synchronous graph that can adapt to different data scenarios.
Extensive experiments on four real-world datasets demonstrate that our model
can achieve about 10% improvements compared with the state-of-art methods.
Source codes are available at https://github.com/jinguangyin/Auto-DSTSGN.
- Abstract(参考訳): 交通ネットワークの複雑な時空間依存性のため、インテリジェント交通システムにおいて正確な交通予測は難しい課題である。
グラフ畳み込みネットワーク(GCN)と組み合わせて、短期および長期の時空間依存を捉えるため、多くの既存の研究が洗練された時間的モデリングアプローチを利用している。
しかし、複雑な設計で分離されたモジュールは時空間表現学習の有効性と効率を制限できる。
さらに、従来のほとんどの研究では、グローバルな時空間関係を特徴付ける固定グラフ構築法を採用しており、これは異なる期間と異なるデータシナリオに対するモデルの学習能力を制限している。
これらの制約を克服するため,トラフィック予測のための自動拡張時空間同期グラフネットワークであるAuto-DSTSGNを提案する。
具体的には,より深い層に拡張係数を積み重ねることで,短期および長期の時空間相関を捉える自動拡張時空間同期グラフ(Auto-DSTSG)を設計する。
さらに,異なるデータシナリオに適応可能な時空間同期グラフを自動的に構築するグラフ構造探索手法を提案する。
4つの実世界のデータセットに対する大規模な実験により、我々のモデルは最先端の手法と比較して約10%改善できることを示した。
ソースコードはhttps://github.com/jinguangyin/Auto-DSTSGNで公開されている。
関連論文リスト
- Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
交通流予測は、過去のネットワークと交通条件に基づいて将来の交通状況を予測することを目的としている。
この問題は、遠時ニューラルネットワーク(GNN)を用いた交通データにおける複雑な時間相関をモデル化することによって、典型的に解決される。
既存の手法は、近隣情報を線形に集約するメッセージパッシングのパラダイムに従っている。
本稿では,交通流予測のための動的ハイパー構造学習(DyHSL)モデルを提案する。
論文 参考訳(メタデータ) (2023-09-21T12:44:55Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - CDGNet: A Cross-Time Dynamic Graph-based Deep Learning Model for Traffic
Forecasting [7.169972421976212]
トラフィック予測のための新しいクロスタイム動的グラフベースディープラーニングモデルCDGNetを提案する。
本研究では,実世界の空間的相関をスパースする時間的動的グラフをスパースするゲーティング機構を設計する。
論文 参考訳(メタデータ) (2021-12-06T01:56:07Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
交通流の空間的-時間的データ予測は複雑な空間的依存性と道路間の時間的パターンの動的傾向のために難しい課題である。
既存のフレームワークは通常、与えられた空間隣接グラフと、空間的および時間的相関をモデル化する洗練されたメカニズムを利用する。
本稿では,交通流予測のための空間時間融合グラフニューラルネットワーク(STFGNN)を提案する。
論文 参考訳(メタデータ) (2020-12-15T14:03:17Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。