論文の概要: Bi-directional Contrastive Learning for Domain Adaptive Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2207.10892v1
- Date: Fri, 22 Jul 2022 05:57:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 13:02:33.659812
- Title: Bi-directional Contrastive Learning for Domain Adaptive Semantic
Segmentation
- Title(参考訳): ドメイン適応セマンティックセマンティックセグメンテーションのための双方向コントラスト学習
- Authors: Geon Lee, Chanho Eom, Wonkyung Lee, Hyekang Park, Bumsub Ham
- Abstract要約: ドメイン適応セマンティックセマンティックセグメンテーションの鍵は、ターゲットとなる接地木ラベルなしでドメイン不変性と識別的特徴を学習することである。
本稿では,同じオブジェクトクラスにおける特徴のクラス内変動を最小限に抑える,双方向の画素プロトタイプ型コントラスト学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 29.573404843110836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel unsupervised domain adaptation method for semantic
segmentation that generalizes a model trained with source images and
corresponding ground-truth labels to a target domain. A key to domain adaptive
semantic segmentation is to learn domain-invariant and discriminative features
without target ground-truth labels. To this end, we propose a bi-directional
pixel-prototype contrastive learning framework that minimizes intra-class
variations of features for the same object class, while maximizing inter-class
variations for different ones, regardless of domains. Specifically, our
framework aligns pixel-level features and a prototype of the same object class
in target and source images (i.e., positive pairs), respectively, sets them
apart for different classes (i.e., negative pairs), and performs the alignment
and separation processes toward the other direction with pixel-level features
in the source image and a prototype in the target image. The cross-domain
matching encourages domain-invariant feature representations, while the
bidirectional pixel-prototype correspondences aggregate features for the same
object class, providing discriminative features. To establish training pairs
for contrastive learning, we propose to generate dynamic pseudo labels of
target images using a non-parametric label transfer, that is, pixel-prototype
correspondences across different domains. We also present a calibration method
compensating class-wise domain biases of prototypes gradually during training.
- Abstract(参考訳): 本稿では、ソース画像と対応する接地木ラベルで訓練されたモデルを対象領域に一般化する意味的セグメンテーションのための教師なしドメイン適応手法を提案する。
ドメイン適応セマンティックセマンティックセグメンテーションの鍵は、ターゲットとなる接地木ラベルなしでドメイン不変性と識別的特徴を学習することである。
そこで本研究では,ドメインに関わらず,異なるオブジェクトのクラス間変動を最大化しつつ,同一オブジェクトのクラス内特徴量を最小限に抑えた双方向画素型コントラスト学習フレームワークを提案する。
具体的には,対象画像と対象画像(正対)で同一のオブジェクトクラスの画素レベル特徴とプロトタイプを整合させ,それぞれ異なるクラス(負のペア)を分離し,ソース画像の画素レベル特徴と対象画像のプロトタイプとを別方向にアライメントおよび分離処理を行う。
クロスドメインマッチングはドメイン不変の特徴表現を奨励し、双方向のピクセルプロトタイプ対応は同じオブジェクトクラスの特徴を集約し、識別的特徴を提供する。
コントラスト学習のためのトレーニングペアを確立するために,異なる領域にまたがる非パラメトリックラベル転送,すなわち画素-プロトタイプ対応を用いて,対象画像の動的擬似ラベルを生成することを提案する。
また,トレーニング中のプロトタイプのクラス毎の偏りを補償するキャリブレーション手法を提案する。
関連論文リスト
- Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
画素単位の領域不変性を学習する際のモデルとして,Pixel-Level Domain Adaptation (PLDA)法を提案する。
我々は,幅広い環境下でのアプローチの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2024-08-04T14:14:54Z) - PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain
Adaptative Semantic Segmentation [100.6343963798169]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、学習モデルの他のドメインへの一般化を強化することを目的としている。
そこで我々は,ドメイン適応型セマンティックセマンティックセグメンテーションのための,PiPaという,画素・パッチ対応の自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-14T18:31:24Z) - Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation [52.63046674453461]
プロトタイプ・コントラスト適応(Prototypeal Contrast Adaptation, ProCA)は、教師なしドメイン適応セマンティックセマンティックセグメンテーションのための対照的な学習法である。
ProCAはクラス間の情報をクラスワイドプロトタイプに組み込み、適応のためにクラス中心の分散アライメントを採用する。
論文 参考訳(メタデータ) (2022-07-14T04:54:26Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - SPCL: A New Framework for Domain Adaptive Semantic Segmentation via
Semantic Prototype-based Contrastive Learning [6.705297811617307]
ドメイン適応は、ラベル付けされたソースドメインからラベル付けされていないターゲットドメインに知識を転送するのに役立ちます。
本稿では,クラスアライメントを微粒化するための新しい意味的プロトタイプに基づくコントラスト学習フレームワークを提案する。
我々の手法は実装が容易であり、最先端の手法と比較して優れた結果が得られる。
論文 参考訳(メタデータ) (2021-11-24T09:26:07Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
本稿では,意味的セグメンテーションにおける教師なしドメイン適応(UDA)の問題に対処する。
ソースドメインとターゲットドメインが不変なセマンティック構造を持つという事実に触発され、ドメイン間におけるそのような不変性を活用することを提案する。
親和性空間適応戦略として,親和性空間の洗浄と親和性空間アライメントという2つの方法を開発した。
論文 参考訳(メタデータ) (2020-09-26T10:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。