Proactive Distributed Emergency Response with Heterogeneous Tasks Allocation
- URL: http://arxiv.org/abs/2207.11132v3
- Date: Mon, 13 Jan 2025 02:38:21 GMT
- Title: Proactive Distributed Emergency Response with Heterogeneous Tasks Allocation
- Authors: Justice Darko, Hyoshin Park,
- Abstract summary: Traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests.
ignoring inherent interdependencies on the evolution of incidents in the environment while making current deployment decisions is shortsighted.
This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations.
- Score: 1.7539061565898157
- License:
- Abstract: Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring inherent interdependencies on the evolution of incidents in the environment while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences, and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate Unmanned Aerial Vehicles (UAVs). The UAVs' role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAV's active sensing can shorten response time of emergency vehicles, and a reduction in uncertainties associated with the estimated incident delay impact.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Global Spatio-Temporal Fusion-based Traffic Prediction Algorithm with Anomaly Aware [12.570413823751494]
We propose a globaltemporal fusion-based traffic prediction algorithm that incorporates anomaly awareness.
We propose a multi-scaletemporal- feature fusion module (MTSFFL) based on the transformer architecture for accurate prediction of traffic flow.
arXiv Detail & Related papers (2024-12-19T06:40:21Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
Traffic flow forecasting is a fundamental research issue for transportation planning and management.
In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting.
However, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed.
arXiv Detail & Related papers (2024-02-02T08:55:23Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Machine learning framework for end-to-end implementation of Incident
duration prediction [0.0]
This research developed an analytical framework and end-to-end machine-learning solution for predicting incident duration based on information available as soon as an incident report is received.
The results showed that the framework significantly improved incident duration prediction compared to methods from previous research.
arXiv Detail & Related papers (2023-04-23T00:55:19Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm.
The formulated problem is NP-hard so finding the optimal solution is quite complex.
We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
arXiv Detail & Related papers (2022-12-21T17:16:42Z) - Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction [17.94199362114272]
In intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation.
We propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence.
We conduct extensive experiments on large-scale real-world tasks and verify the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-05-21T17:43:07Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
We study the setting proposed in V2VNet, where nearby self-driving vehicles jointly perform object detection and motion forecasting in a cooperative manner.
We propose a novel neural reasoning framework that learns to communicate, to estimate potential errors, and to reach a consensus about those errors.
arXiv Detail & Related papers (2020-11-10T18:19:40Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.