Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction
- URL: http://arxiv.org/abs/2105.10478v1
- Date: Fri, 21 May 2021 17:43:07 GMT
- Title: Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction
- Authors: Zichuan Liu, Rui Zhang, Chen Wang, Hongbo Jiang
- Abstract summary: In intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation.
We propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence.
We conduct extensive experiments on large-scale real-world tasks and verify the effectiveness of our proposed method.
- Score: 17.94199362114272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intelligent transportation system, the key problem of traffic forecasting
is how to extract the periodic temporal dependencies and complex spatial
correlation. Current state-of-the-art methods for traffic flow prediction are
based on graph architectures and sequence learning models, but they do not
fully exploit spatial-temporal dynamic information in traffic system.
Specifically, the temporal dependence of short-range is diluted by recurrent
neural networks, and existing sequence model ignores local spatial information
because the convolution operation uses global average pooling. Besides, there
will be some traffic accidents during the transitions of objects causing
congestion in the real world that trigger increased prediction deviation. To
overcome these challenges, we propose the Spatial-Temporal Conv-sequence
Learning (STCL), in which a focused temporal block uses unidirectional
convolution to effectively capture short-term periodic temporal dependence, and
a spatial-temporal fusion module is able to extract the dependencies of both
interactions and decrease the feature dimensions. Moreover, the accidents
features impact on local traffic congestion and position encoding is employed
to detect anomalies in complex traffic situations. We conduct extensive
experiments on large-scale real-world tasks and verify the effectiveness of our
proposed method.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
We propose a temporal graph neural point process framework, named STNPP, for traffic congestion event prediction.
Our method achieves superior performance in comparison to existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-11-15T01:22:47Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction [10.722455633629883]
We propose a Transport-Hub-aware spatial-temporal adaptive graph transFormer for traffic flow prediction.
Specifically, we first design a novel spatial self-attention module to capture the dynamic spatial dependencies.
We also employ a temporal self-attention module to detect dynamic temporal patterns in the traffic flow data.
arXiv Detail & Related papers (2023-10-12T13:44:35Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
We propose a Multi-Scale Spatial-Temporal Recurrent Network for traffic flow prediction, namely MSSTRN.
We propose a spatial-temporal synchronous attention mechanism that integrates adaptive position graph convolutions into the self-attention mechanism to achieve synchronous capture of spatial-temporal dependencies.
Our model achieves the best prediction accuracy with non-trivial margins compared to all the twenty baseline methods.
arXiv Detail & Related papers (2023-10-12T08:52:36Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.