Invisible non-Hermitian potentials in discrete-time photonic quantum
walks
- URL: http://arxiv.org/abs/2207.11423v1
- Date: Sat, 23 Jul 2022 05:50:45 GMT
- Title: Invisible non-Hermitian potentials in discrete-time photonic quantum
walks
- Authors: Stefano Longhi
- Abstract summary: It is shown that, under certain conditions, slowly-drifting Kramers-Kronig potentials behave as invisible potentials in discrete-time photonic quantum walks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete-time photonic quantum walks on a synthetic lattice, where both
spatial and temporal evolution of light is discretized, have provided recently
a fascinating platform for the observation of a wealth of non-Hermitian
physical phenomena and for the control of light scattering in complex media. A
rather open question is whether invisible potentials, analogous to the ones
known for continuous optical media, do exist in such discretized systems.
Here it is shown that, under certain conditions, slowly-drifting
Kramers-Kronig potentials behave as invisible potentials in discrete-time
photonic quantum walks.
Related papers
- Cavity quantum electrodynamics of photonic temporal crystals [11.957592902904516]
Photonic temporal crystals host a variety of intriguing phenomena, from wave amplification and mixing to exotic band structures.
We introduce a quantum electrodynamical model of PTCs that reveals a deeper connection between classical and quantum pictures.
arXiv Detail & Related papers (2025-01-06T16:13:03Z) - Quantum walks of correlated photons in non-Hermitian photonic lattices [7.927053393110687]
Entanglement entropy characterizes the correlation of multi-particles and unveils the crucial features of open quantum systems.
We propose and experimentally realize quantum walks of two indistinguishable photons in engineered non-Hermitian photonic lattices.
We experimentally reveal the suppression of entanglement that is caused by the skin effect in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-16T09:44:32Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Spatiotemporal single-photon Airy bullets [20.416671946991904]
Uninhibited control of the complex quantum wavefunction of a single photon has so far remained elusive.
We synthesize in a robust and versatile manner arbitrary quantum nonspreadingtemporal light bullets.
arXiv Detail & Related papers (2022-12-15T10:06:24Z) - Non-Hermitian invisibility in tight-binding lattices [0.0]
A flexible control of wave scattering in complex media is of relevance in different areas of classical and quantum physics.
We show that a wide class of time-dependent non-Hermitian scattering potentials can be synthesized in an Hermitian single-band tight-binding lattice.
arXiv Detail & Related papers (2022-09-24T05:08:34Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Multiphoton Quantum van Cittert-Zernike Theorem [0.0]
We introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems.
We show that conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit.
arXiv Detail & Related papers (2022-02-15T01:14:49Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.