Topological photon pairs in a superconducting quantum metamaterial
- URL: http://arxiv.org/abs/2006.12794v1
- Date: Tue, 23 Jun 2020 07:04:27 GMT
- Title: Topological photon pairs in a superconducting quantum metamaterial
- Authors: Ilya S. Besedin, Maxim A. Gorlach, Nikolay N. Abramov, Ivan Tsitsilin,
Ilya N. Moskalenko, Alina A. Dobronosova, Dmitry O. Moskalev, Alexey R.
Matanin, Nikita S. Smirnov, Ilya A. Rodionov, Alexander N. Poddubny, Alexey
V. Ustinov
- Abstract summary: We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
- Score: 44.62475518267084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent discoveries in topological physics hold a promise for disorder-robust
quantum systems and technologies. Topological states provide the crucial
ingredient of such systems featuring increased robustness to disorder and
imperfections. Here, we use an array of superconducting qubits to engineer a
one-dimensional topologically nontrivial quantum metamaterial. By performing
microwave spectroscopy of the fabricated array, we experimentally observe the
spectrum of elementary excitations. We find not only the single-photon
topological states but also the bands of exotic bound photon pairs arising due
to the inherent anharmonicity of qubits. Furthermore, we detect the signatures
of the two-photon bound edge-localized state which hints towards
interaction-induced localization in our system. Our work demonstrates an
experimental implementation of the topological model with attractive
photon-photon interaction in a quantum metamaterial.
Related papers
- Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Observation of a superradiant phase transition with emergent cat states [18.801683138820948]
Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level.
We report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field.
arXiv Detail & Related papers (2022-07-12T13:12:23Z) - Resonant Semiconductor Metasurfaces for Generating Complex Quantum
States [0.0]
We generate entangled photons via spontaneous parametric down-conversion in semiconductor metasurfaces with high-quality resonances.
Our results demonstrate the multifunctional use of metasurfaces for quantum state engineering.
arXiv Detail & Related papers (2022-04-21T19:01:04Z) - Topological photonics on superconducting quantum circuits with
parametric couplings [1.5315375015702]
Topological phases of matter is an exotic phenomena in modern condense matter physics.
Topological photonics emerges as a rapid growing research field.
We review theoretical and experimental advances of topological photonics on superconducting quantum circuits.
arXiv Detail & Related papers (2021-02-01T14:31:17Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.