論文の概要: Learning Generalizable Light Field Networks from Few Images
- arxiv url: http://arxiv.org/abs/2207.11757v1
- Date: Sun, 24 Jul 2022 14:47:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:32:15.501160
- Title: Learning Generalizable Light Field Networks from Few Images
- Title(参考訳): 少数の画像から一般化可能な光場ネットワークを学習する
- Authors: Qian Li, Franck Multon, Adnane Boukhayma
- Abstract要約: ニューラル光場表現に基づく数発の新規ビュー合成のための新しい戦略を提案する。
提案手法は,最先端のニューラルラジアンスフィールドに基づく競合に対して,合成および実MVSデータ上での競合性能を実現する。
- 参考スコア(独自算出の注目度): 7.672380267651058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a new strategy for few-shot novel view synthesis based on a neural
light field representation. Given a target camera pose, an implicit neural
network maps each ray to its target pixel's color directly. The network is
conditioned on local ray features generated by coarse volumetric rendering from
an explicit 3D feature volume. This volume is built from the input images using
a 3D ConvNet. Our method achieves competitive performances on synthetic and
real MVS data with respect to state-of-the-art neural radiance field based
competition, while offering a 100 times faster rendering.
- Abstract(参考訳): ニューラル光場表現に基づく数発の新規ビュー合成のための新しい戦略を探索する。
ターゲットカメラのポーズが与えられると、暗黙のニューラルネットワークは各光線をターゲットピクセルの色に直接マッピングする。
ネットワークは、明示的な3D特徴量から粗いボリュームレンダリングによって生成された局所光線特徴に条件付けされる。
このボリュームは3D ConvNetを使って入力画像から作られる。
提案手法は,100倍高速なレンダリングを実現するとともに,最先端のニューラルラジアンスフィールドベースの競合に対して,合成および実MVSデータに対する競合性能を実現する。
関連論文リスト
- N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
3Dコンピュータグラフィックスでは、シーンのメモリ使用量の大部分がポリゴンとテクスチャによるものである。
N-BVHは3次元の任意の光線クエリに応答するように設計されたニューラル圧縮アーキテクチャである。
本手法は, 視認性, 深度, 外観特性を忠実に近似する。
論文 参考訳(メタデータ) (2024-05-25T13:54:34Z) - Relit-NeuLF: Efficient Relighting and Novel View Synthesis via Neural 4D
Light Field [69.90548694719683]
本稿ではRelit-NeuLFと呼ばれる分析合成手法を提案する。
まず、4次元座標系で各光線をパラメータ化し、効率的な学習と推論を可能にする。
総合的な実験により,提案手法は合成データと実世界の顔データの両方において効率的かつ効果的であることが実証された。
論文 参考訳(メタデータ) (2023-10-23T07:29:51Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - TermiNeRF: Ray Termination Prediction for Efficient Neural Rendering [18.254077751772005]
ニューラルネットワークを用いたボリュームレンダリングは、3Dシーンの新たなビューをキャプチャして合成する上で大きな可能性を秘めている。
この種のアプローチでは、画像をレンダリングするために、各ビューレイに沿って複数のポイントでボリュームネットワークをクエリする必要がある。
本稿では,この限界を克服するために,画素の最終的な外観に影響を与える可能性が最も高いカメラ線から,光線に沿った位置への直接マッピングを学習する手法を提案する。
論文 参考訳(メタデータ) (2021-11-05T17:50:44Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
2次元観察から3Dシーンの表現を推定することは、コンピュータグラフィックス、コンピュータビジョン、人工知能の基本的な問題である。
そこで我々は,360度4次元光場における基礎となる3次元シーンの形状と外観の両面を表現した新しいニューラルシーン表現,光場ネットワーク(LFN)を提案する。
LFNからレイをレンダリングするには*single*ネットワークの評価しか必要としない。
論文 参考訳(メタデータ) (2021-06-04T17:54:49Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRFは、1つまたは少数の入力画像に条件付された連続的なニューラルシーン表現を予測する学習フレームワークである。
本研究では,単一画像の新規ビュー合成タスクのためのShapeNetベンチマーク実験を行った。
いずれの場合も、ピクセルNeRFは、新しいビュー合成とシングルイメージ3D再構成のための最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-12-03T18:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。