A Deep Dive into Deep Cluster
- URL: http://arxiv.org/abs/2207.11839v1
- Date: Sun, 24 Jul 2022 22:55:09 GMT
- Title: A Deep Dive into Deep Cluster
- Authors: Ahmad Mustapha, Wael Khreich, Wasim Masr
- Abstract summary: DeepCluster is a simple and scalable unsupervised pretraining of visual representations.
We show that DeepCluster convergence and performance depend on the interplay between the quality of the randomly filters of the convolutional layer and the selected number of clusters.
- Score: 0.2578242050187029
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Learning has demonstrated a significant improvement against traditional
machine learning approaches in different domains such as image and speech
recognition. Their success on benchmark datasets is transferred to the
real-world through pretrained models by practitioners. Pretraining visual
models using supervised learning requires a significant amount of expensive
data annotation. To tackle this limitation, DeepCluster - a simple and scalable
unsupervised pretraining of visual representations - has been proposed.
However, the underlying work of the model is not yet well understood. In this
paper, we analyze DeepCluster internals and exhaustively evaluate the impact of
various hyperparameters over a wide range of values on three different
datasets. Accordingly, we propose an explanation of why the algorithm works in
practice. We also show that DeepCluster convergence and performance highly
depend on the interplay between the quality of the randomly initialized filters
of the convolutional layer and the selected number of clusters. Furthermore, we
demonstrate that continuous clustering is not critical for DeepCluster
convergence. Therefore, early stopping of the clustering phase will reduce the
training time and allow the algorithm to scale to large datasets. Finally, we
derive plausible hyperparameter selection criteria in a semi-supervised
setting.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Snapshot Spectral Clustering -- a costless approach to deep clustering
ensembles generation [0.0]
This paper proposes a novel deep clustering ensemble method - Snapshot Spectral Clustering.
It is designed to maximize the gain from combining multiple data views while minimizing the computational costs of creating the ensemble.
arXiv Detail & Related papers (2023-07-17T16:01:22Z) - XAI for Self-supervised Clustering of Wireless Spectrum Activity [0.5809784853115825]
We propose a methodology for explaining deep clustering, self-supervised learning architectures.
For the representation learning part, our methodology employs Guided Backpropagation to interpret the regions of interest of the input data.
For the clustering part, the methodology relies on Shallow Trees to explain the clustering result.
Finally, a data-specific visualizations part enables connection for each of the clusters to the input data trough the relevant features.
arXiv Detail & Related papers (2023-05-17T08:56:43Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
We present a scalable deep online clustering model, named Spectral-Spatial Contrastive Clustering (SSCC)
We exploit a symmetric twin neural network comprised of a projection head with a dimensionality of the cluster number to conduct dual contrastive learning from a spectral-spatial augmentation pool.
The resulting approach is trained in an end-to-end fashion by batch-wise optimization, making it robust in large-scale data and resulting in good generalization ability for unseen data.
arXiv Detail & Related papers (2021-11-15T17:50:06Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.