XAI for Self-supervised Clustering of Wireless Spectrum Activity
- URL: http://arxiv.org/abs/2305.10060v1
- Date: Wed, 17 May 2023 08:56:43 GMT
- Title: XAI for Self-supervised Clustering of Wireless Spectrum Activity
- Authors: Ljupcho Milosheski, Gregor Cerar, Bla\v{z} Bertalani\v{c}, Carolina
Fortuna and Mihael Mohor\v{c}i\v{c}
- Abstract summary: We propose a methodology for explaining deep clustering, self-supervised learning architectures.
For the representation learning part, our methodology employs Guided Backpropagation to interpret the regions of interest of the input data.
For the clustering part, the methodology relies on Shallow Trees to explain the clustering result.
Finally, a data-specific visualizations part enables connection for each of the clusters to the input data trough the relevant features.
- Score: 0.5809784853115825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The so-called black-box deep learning (DL) models are increasingly used in
classification tasks across many scientific disciplines, including wireless
communications domain. In this trend, supervised DL models appear as most
commonly proposed solutions to domain-related classification problems. Although
they are proven to have unmatched performance, the necessity for large labeled
training data and their intractable reasoning, as two major drawbacks, are
constraining their usage. The self-supervised architectures emerged as a
promising solution that reduces the size of the needed labeled data, but the
explainability problem remains. In this paper, we propose a methodology for
explaining deep clustering, self-supervised learning architectures comprised of
a representation learning part based on a Convolutional Neural Network (CNN)
and a clustering part. For the state of the art representation learning part,
our methodology employs Guided Backpropagation to interpret the regions of
interest of the input data. For the clustering part, the methodology relies on
Shallow Trees to explain the clustering result using optimized depth decision
tree. Finally, a data-specific visualizations part enables connection for each
of the clusters to the input data trough the relevant features. We explain on a
use case of wireless spectrum activity clustering how the CNN-based, deep
clustering architecture reasons.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepCluster is a simple and scalable unsupervised pretraining of visual representations.
We show that DeepCluster convergence and performance depend on the interplay between the quality of the randomly filters of the convolutional layer and the selected number of clusters.
arXiv Detail & Related papers (2022-07-24T22:55:09Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Deep Fusion Clustering Network [38.540761683389135]
We propose a Deep Fusion Clustering Network (DFCN) for deep clustering.
In our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder.
Experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2020-12-15T09:37:59Z) - EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic
Analysis [7.447122949368314]
We introduce EXPLAIN-IT, a methodology which deals with unlabeled data, creates meaningful clusters, and suggests an explanation to the clustering results for the end-user.
We apply EXPLAIN-IT to the problem of YouTube video quality classification under encrypted traffic scenarios, showing promising results.
arXiv Detail & Related papers (2020-03-03T17:54:41Z) - Structural Deep Clustering Network [45.370272344031285]
We propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering.
Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer.
In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder.
arXiv Detail & Related papers (2020-02-05T04:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.