論文の概要: Efficient Classification with Counterfactual Reasoning and Active
Learning
- arxiv url: http://arxiv.org/abs/2207.12086v1
- Date: Mon, 25 Jul 2022 12:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:35:43.769284
- Title: Efficient Classification with Counterfactual Reasoning and Active
Learning
- Title(参考訳): 反事実推論とアクティブラーニングによる効率的な分類
- Authors: Azhar Mohammed, Dang Nguyen, Bao Duong, Thin Nguyen
- Abstract要約: CCRALと呼ばれる手法は、因果推論と、元のトレーニングサンプルの反事実サンプルの学習と、不確実性の領域に基づいて有用な反事実サンプルを選択するアクティブラーニングを組み合わせたものである。
実験の結果, CCRALは精度とAUCの点で, ベースラインよりも有意に優れた性能を示した。
- 参考スコア(独自算出の注目度): 4.708737212700907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is one of the most successful techniques to improve the
classification accuracy of machine learning models in computer vision. However,
applying data augmentation to tabular data is a challenging problem since it is
hard to generate synthetic samples with labels. In this paper, we propose an
efficient classifier with a novel data augmentation technique for tabular data.
Our method called CCRAL combines causal reasoning to learn counterfactual
samples for the original training samples and active learning to select useful
counterfactual samples based on a region of uncertainty. By doing this, our
method can maximize our model's generalization on the unseen testing data. We
validate our method analytically, and compare with the standard baselines. Our
experimental results highlight that CCRAL achieves significantly better
performance than those of the baselines across several real-world tabular
datasets in terms of accuracy and AUC. Data and source code are available at:
https://github.com/nphdang/CCRAL.
- Abstract(参考訳): データ拡張は、コンピュータビジョンにおける機械学習モデルの分類精度を改善する最も成功した手法の1つである。
しかし、ラベル付き合成サンプルの生成が困難であるため、表型データにデータ拡張を適用することは難しい問題である。
本稿では,表データに対する新しいデータ拡張手法を用いた効率的な分類器を提案する。
ccral と呼ばれる手法は, 因果推論を組み合わせることで, 元のトレーニングサンプルの反事実サンプルを学習し, 不確実性領域に基づいて有用な反事実サンプルを選択するアクティブラーニングを行う。
これにより,本手法は未知のテストデータに対するモデルの一般化を最大化することができる。
本手法を解析的に検証し,標準ベースラインと比較した。
実験の結果, CCRALは, 精度とAUCの点で, 現実の表層データセットのベースラインよりもはるかに優れた性能を実現していることがわかった。
データとソースコードは、https://github.com/nphdang/CCRAL.comで入手できる。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
脳波分類タスクを記述するためのグラフィカルモデルをいくつか提案する。
理想的な訓練シナリオにおいて真であるべき統計的関係を同定する。
我々は、これらの関係を2段階で強制する正規化罰則を設計する。
論文 参考訳(メタデータ) (2023-10-12T23:06:52Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
ディープラーニングモデルはトレーニングに大量のデータを必要とすることが多く、結果としてコストが増大する。
実世界の画像データの冗長性を調べるために,シナプスインテリジェンスと勾配ノルムに基づく2つのデータ評価指標を提案する。
オンラインおよびオフラインのデータ選択アルゴリズムは、検査されたデータ値に基づいてクラスタリングとグループ化によって提案される。
論文 参考訳(メタデータ) (2023-06-25T03:31:05Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Active Learning with Combinatorial Coverage [0.0]
アクティブな学習は、ラベル付けするデータを選択するプロセスを自動化する機械学習の実践的な分野である。
現在の手法はデータラベリングの負担を軽減するのに有効であるが、モデルに強く依存する。
これにより、サンプルデータの新しいモデルへの転送が不可能になり、サンプリングバイアスの問題も発生した。
本稿では,これらの課題を克服するために,カバレッジを活用した能動的学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T13:43:23Z) - Too Fine or Too Coarse? The Goldilocks Composition of Data Complexity
for Robust Left-Right Eye-Tracking Classifiers [0.0]
我々は、細粒度データと粗粒度データの両方からなる混合データセットを用いて機械学習モデルを訓練する。
我々の目的のために、細粒度データはより複雑な方法で収集されたデータを指すのに対し、粗粒度データはより単純な方法で収集されたデータを指す。
論文 参考訳(メタデータ) (2022-08-24T23:18:08Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。