論文の概要: Domain Decorrelation with Potential Energy Ranking
- arxiv url: http://arxiv.org/abs/2207.12194v2
- Date: Tue, 26 Jul 2022 01:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-27 10:35:10.685532
- Title: Domain Decorrelation with Potential Energy Ranking
- Title(参考訳): ポテンシャルエネルギーランキングによるドメインのデコレーション
- Authors: Sen Pei, Jiaxi Sun, Shiming Xiang, and Gaofeng Meng
- Abstract要約: textbfPotential textbfEnergy textbfRanking (PoER)を提案する。
PoERは、浅い層にドメイン情報を含むラベル関連機能をニューラルネットワークがキャプチャするのに役立つ。
ドメインベンチマークのパフォーマンスが向上し、既存の手法に比べて平均トップ1の精度が1.20%向上したと報告している。
- 参考スコア(独自算出の注目度): 40.43902519672898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems, especially the methods based on deep learning,
enjoy great success in modern computer vision tasks under experimental
settings. Generally, these classic deep learning methods are built on the
\emph{i.i.d.} assumption, supposing the training and test data are drawn from a
similar distribution independently and identically. However, the aforementioned
\emph{i.i.d.} assumption is in general unavailable in the real-world scenario,
and as a result, leads to sharp performance decay of deep learning algorithms.
Behind this, domain shift is one of the primary factors to be blamed. In order
to tackle this problem, we propose using \textbf{Po}tential \textbf{E}nergy
\textbf{R}anking (PoER) to decouple the object feature and the domain feature
(\emph{i.e.,} appearance feature) in given images, promoting the learning of
label-discriminative features while filtering out the irrelevant correlations
between the objects and the background. PoER helps the neural networks to
capture label-related features which contain the domain information first in
shallow layers and then distills the label-discriminative representations out
progressively, enforcing the neural networks to be aware of the characteristic
of objects and background which is vital to the generation of domain-invariant
features. PoER reports superior performance on domain generalization
benchmarks, improving the average top-1 accuracy by at least 1.20\% compared to
the existing methods. Moreover, we use PoER in the ECCV 2022 NICO
Challenge\footnote{https://nicochallenge.com}, achieving top place with only a
vanilla ResNet-18. The code has been made available at
https://github.com/ForeverPs/PoER.
- Abstract(参考訳): 機械学習システム、特にディープラーニングに基づく手法は、実験環境下での現代のコンピュータビジョンタスクで大きな成功を収めている。
一般に、これらの古典的なディープラーニング手法は、emph{i.d.}仮定に基づいて構築され、トレーニングとテストデータの仮定は、同じ分布から独立かつ同一に描画される。
しかし、前述の 'emph{i.d.} 仮定は一般に現実世界のシナリオでは不可能であり、結果としてディープラーニングアルゴリズムのパフォーマンスが急落する。
この背景には、ドメインシフトが非難される主な要因の1つです。
この問題に対処するために、オブジェクトと背景の無関係な相関関係をフィルタリングしながらラベル識別特徴の学習を促進するために、オブジェクト特徴とドメイン特徴(\emph{i.e.}外見特徴)を分離するために \textbf{Po}tential \textbf{E}nergy \textbf{R}anking (PoER) を用いることを提案する。
poerはニューラルネットワークが、まず浅い層にドメイン情報を含むラベル関連の特徴をキャプチャし、次にラベル識別表現を段階的に抽出し、ドメイン不変な特徴の生成に不可欠なオブジェクトと背景の特性を認識するようにニューラルネットワークを強制する。
PoERは、ドメイン一般化ベンチマークで優れたパフォーマンスを報告し、既存の手法と比較して平均トップ1の精度を少なくとも1.20倍改善した。
さらに、私たちはeccv 2022 nico challenge\footnote{https://nicochallenge.com}でpoerを使い、バニラresnet-18でトップに立った。
コードはhttps://github.com/foreverps/poerで入手できる。
関連論文リスト
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Test-Time Domain Adaptation by Learning Domain-Aware Batch Normalization [39.14048972373775]
テストタイムドメイン適応は、ソースドメインでトレーニングされたモデルを、ラベルのないいくつかのイメージを使用して、未表示のターゲットドメインに適応することを目的としている。
従来の作業は通常、ラベルとドメイン間の知識を明示的に分離することなく、ネットワーク全体をナビゲート的に更新する。
本稿では,BN層のみを操作することにより,そのような学習の干渉を低減し,ドメイン知識の学習を高めることを提案する。
論文 参考訳(メタデータ) (2023-12-15T19:22:21Z) - FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly
Supervised Object Localization [10.08410402383604]
本研究は、クラス増分弱教師付きオブジェクトローカライゼーション(CI-WSOL)の課題に対処する。
ゴールは、画像レベルのアノテーションのみを使用して、新しいクラスのオブジェクトローカライゼーションを漸進的に学習し、以前に学習したクラスをローカライズする能力を維持することである。
まず、クラスインクリメンタル分類器の戦略を破滅的な忘れ方に適用し、CI-WSOLの強力なベースライン法を提案する。
そこで我々は,特徴ドリフトがクラススコアやローカライゼーションマップに与える影響を補償する特徴ドリフト補償ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-17T01:10:45Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation [78.30720731968135]
セマンティックセグメンテーションにおける教師なしドメイン適応は、高価なピクセル単位のアノテーションへの依存を軽減するために提起されている。
我々は、ソースドメインのオーバーフィットを軽減し、最終的なモデルをセグメント化タスクに集中できるようにするDecoupleNetを提案する。
我々はまた、自己識別(SD)を推進し、擬似ラベルでより識別可能なターゲットドメイン特徴を学習するための補助分類器を導入した。
論文 参考訳(メタデータ) (2022-07-20T15:47:34Z) - Domain-Invariant Proposals based on a Balanced Domain Classifier for
Object Detection [8.583307102907295]
画像からのオブジェクト認識は、興味のあるオブジェクトを自動的に見つけ、カテゴリと位置情報を返すことを意味する。
畳み込みニューラルネットワーク(CNN)や生成的敵ネットワークといった深層学習の研究により、この分野のパフォーマンスは大幅に改善された。
分布のミスマッチ、すなわちドメインシフトは、大幅なパフォーマンス低下につながります。
論文 参考訳(メタデータ) (2022-02-12T00:21:27Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
畳み込みニューラルネットワーク(CNN)は、ラベルと相関する支配的特徴を活性化することにより、画像分類を行う。
ドメイン外データに対するCNNの一般化を著しく改善する簡単なトレーニングである自己整合表現(RSC)を導入する。
RSCはトレーニングデータ上で活性化される主要な機能に対して反復的に挑戦し、ラベルと相関する残りの機能を有効にするようネットワークに強制する。
論文 参考訳(メタデータ) (2020-07-05T21:42:26Z) - Person Re-identification: Implicitly Defining the Receptive Fields of
Deep Learning Classification Frameworks [5.123298347655088]
本稿では,ネットワークの受容領域の推論を暗黙的に駆動する手法について述べる。
セグメンテーションモジュールを使用して、各学習インスタンスの前景(重要)/バックグラウンド(無関係)を区別します。
この戦略は典型的にネットワークを早期収束と適切な解へと駆り立て、アイデンティティと記述は相関しない。
論文 参考訳(メタデータ) (2020-01-30T11:45:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。