RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments
- URL: http://arxiv.org/abs/2207.12321v1
- Date: Sat, 16 Jul 2022 12:40:17 GMT
- Title: RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments
- Authors: Yafu Tian, Alexander Carballo, Ruifeng Li and Kazuya Takeda
- Abstract summary: We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
- Score: 72.04891523115535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavioral and semantic relationships play a vital role on intelligent
self-driving vehicles and ADAS systems. Different from other research focused
on trajectory, position, and bounding boxes, relationship data provides a human
understandable description of the object's behavior, and it could describe an
object's past and future status in an amazingly brief way. Therefore it is a
fundamental method for tasks such as risk detection, environment understanding,
and decision making. In this paper, we propose RSG-Net (Road Scene Graph Net):
a graph convolutional network designed to predict potential semantic
relationships from object proposals, and produces a graph-structured result,
called "Road Scene Graph". The experimental results indicate that this network,
trained on Road Scene Graph dataset, could efficiently predict potential
semantic relationships among objects around the ego-vehicle.
Related papers
- nuScenes Knowledge Graph -- A comprehensive semantic representation of
traffic scenes for trajectory prediction [6.23221362105447]
Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles.
It is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules.
This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes.
arXiv Detail & Related papers (2023-12-15T10:40:34Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Detecting Owner-member Relationship with Graph Convolution Network in
Fisheye Camera System [9.665475078766017]
We propose an innovative relationship prediction method, DeepWORD, by designing a graph convolutional network (GCN)
In the experiments we learned that the proposed method achieved state-of-the-art accuracy and real-time performance.
arXiv Detail & Related papers (2022-01-28T13:12:27Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset
for Intelligent Vehicles [72.04891523115535]
We propose road scene graph,a special scene-graph for intelligent vehicles.
It provides not only object proposals but also their pair-wise relationships.
By organizing them in a topological graph, these data are explainable, fully-connected, and could be easily processed by GCNs.
arXiv Detail & Related papers (2020-11-27T07:33:11Z) - RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks [19.582873794287632]
A key aspect of driving a road vehicle is to interact with other road users, assess their intentions and make risk-aware tactical decisions.
We propose a novel driving framework for egocentric views based on traffic graphs.
We claim that our framework learns risk-aware representations by improving on the task of risk object identification.
arXiv Detail & Related papers (2020-11-17T15:49:22Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.