RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks
- URL: http://arxiv.org/abs/2011.08722v3
- Date: Sun, 6 Aug 2023 17:14:33 GMT
- Title: RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks
- Authors: Videsh Suman and Phu Pham and Aniket Bera
- Abstract summary: A key aspect of driving a road vehicle is to interact with other road users, assess their intentions and make risk-aware tactical decisions.
We propose a novel driving framework for egocentric views based on traffic graphs.
We claim that our framework learns risk-aware representations by improving on the task of risk object identification.
- Score: 19.582873794287632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key aspect of driving a road vehicle is to interact with other road users,
assess their intentions and make risk-aware tactical decisions. An intuitive
approach to enabling an intelligent automated driving system would be
incorporating some aspects of human driving behavior. To this end, we propose a
novel driving framework for egocentric views based on spatio-temporal traffic
graphs. The traffic graphs model not only the spatial interactions amongst the
road users but also their individual intentions through temporally associated
message passing. We leverage a spatio-temporal graph convolutional network
(ST-GCN) to train the graph edges. These edges are formulated using
parameterized functions of 3D positions and scene-aware appearance features of
road agents. Along with tactical behavior prediction, it is crucial to evaluate
the risk-assessing ability of the proposed framework. We claim that our
framework learns risk-aware representations by improving on the task of risk
object identification, especially in identifying objects with vulnerable
interactions like pedestrians and cyclists.
Related papers
- GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving [16.245949174447574]
We propose the Interaction Scene Graph (ISG) as a unified method to model the interactions among the ego-vehicle, road agents, and map elements.
We evaluate the proposed method for end-to-end autonomous driving on the nuScenes dataset.
arXiv Detail & Related papers (2024-03-28T02:22:28Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
We present a novel approach for a graph-based motion prediction based on a heterogeneous holistic graph representation.
The information is encoded through different types of nodes and edges that both are enriched with arbitrary features.
arXiv Detail & Related papers (2023-01-31T10:46:46Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
We propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene.
The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges.
We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
arXiv Detail & Related papers (2020-09-27T18:20:03Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.