Fast Quantum Interference of a Nanoparticle via Optical Potential
Control
- URL: http://arxiv.org/abs/2207.12539v1
- Date: Mon, 25 Jul 2022 21:28:12 GMT
- Title: Fast Quantum Interference of a Nanoparticle via Optical Potential
Control
- Authors: Lukas Neumeier, Mario A. Ciampini, Oriol Romero-Isart, Markus
Aspelmeyer, Nikolai Kiesel
- Abstract summary: We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle.
We show that this allows operating on short time- and lengthscales, which significantly reduces the demands on decoherence rates in such experiments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce and theoretically analyze a scheme to prepare and detect
non-Gaussian quantum states of an optically levitated particle via the
interaction with a light pulse that generates cubic and inverted potentials. We
show that this allows operating on short time- and lengthscales, which
significantly reduces the demands on decoherence rates in such experiments.
Specifically, our scheme predicts the observation of interference of
nanoparticles with a mass above $10^8$ atomic mass units delocalised over
several nanometers, on timescales of milliseconds, when operated at vacuum
levels around $10^{-10}$~mbar and at room temperature. We discuss the prospect
of using this approach for coherently splitting the wavepacket of massive
dielectric objects using neither projective measurements nor an internal level
structure.
Related papers
- Quantum coherence and interference of a single moir\'e exciton in
nano-fabricated twisted semiconductor heterobilayers [7.407499080938729]
Moir'e potential acts as periodic quantum confinement for optically generated exciton, generating spatially ordered quantum system.
We have demonstrated a new method to realize the optical observation of quantum coherence and interference of a single moir'e exciton.
The observed quantum coherence and interference of moir'e exciton will facilitate potential application toward quantum technologies based on moir'e quantum systems.
arXiv Detail & Related papers (2023-09-06T10:12:09Z) - Cold damping of levitated optically coupled nanoparticles [0.0]
Methods for controlling the motion of single particles, optically levitated in vacuum, have developed rapidly in recent years.
We show that the same method can be applied to a pair of nanoparticles, coupled by optical binding forces.
We demonstrate cold damping of these normal modes, either independently or simultaneously, to sub-Kelvin temperatures at pressures of 5x10-3 mbar.
arXiv Detail & Related papers (2023-05-19T16:46:10Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
A mechanically compliant element can be set into motion by the interaction with light.
This light-driven motion can give rise to ponderomotive correlations in the electromagnetic field.
cavities are often employed to enhance these correlations up to the point where they generate quantum squeezing of light.
arXiv Detail & Related papers (2022-02-18T07:57:36Z) - Steady motional entanglement between two distant levitated nanoparticles [0.6091702876917279]
We consider two distant nanoparticles, both of which are optically trapped in two cavities.
Based on the coherent scattering mechanism, we find that the ultrastrong optomechanical coupling between the cavity modes and the motion of the levitated nanoparticles could achieve.
The large and steady entanglement between the filtered output cavity modes and the motion of nanosparticles can be generated, if the trapping laser is under the red sideband.
arXiv Detail & Related papers (2021-11-23T02:43:18Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Large Quantum Delocalization of a Levitated Nanoparticle using Optimal
Control: Applications for Force Sensing and Entangling via Weak Forces [0.0]
We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion.
We show that this fast loop protocol can be used to enhance force sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles.
arXiv Detail & Related papers (2020-12-22T18:59:11Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.