論文の概要: Classifier-Free Diffusion Guidance
- arxiv url: http://arxiv.org/abs/2207.12598v1
- Date: Tue, 26 Jul 2022 01:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-27 12:18:33.691679
- Title: Classifier-Free Diffusion Guidance
- Title(参考訳): 分類器フリー拡散誘導
- Authors: Jonathan Ho, Tim Salimans
- Abstract要約: 誘導法は条件付き拡散モデルにおけるモードカバレッジとサンプル忠実度をトレードオフする手法として最近導入された。
このような分類器を使わずに、純粋な生成モデルによってガイダンスを実際に実行できることが示される。
結果の条件と非条件のスコアの見積もりを組み合わせることで、サンプルの品質と多様性のトレードオフを達成します。
- 参考スコア(独自算出の注目度): 17.355749359987648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifier guidance is a recently introduced method to trade off mode
coverage and sample fidelity in conditional diffusion models post training, in
the same spirit as low temperature sampling or truncation in other types of
generative models. Classifier guidance combines the score estimate of a
diffusion model with the gradient of an image classifier and thereby requires
training an image classifier separate from the diffusion model. It also raises
the question of whether guidance can be performed without a classifier. We show
that guidance can be indeed performed by a pure generative model without such a
classifier: in what we call classifier-free guidance, we jointly train a
conditional and an unconditional diffusion model, and we combine the resulting
conditional and unconditional score estimates to attain a trade-off between
sample quality and diversity similar to that obtained using classifier
guidance.
- Abstract(参考訳): 分類器指導は, 条件付き拡散モデルにおけるモードカバレッジとサンプル忠実度を, その他の生成モデルにおける低温サンプリングや切り離しと同じ精神でトレードオフする手法として最近導入された。
分類器ガイダンスは、拡散モデルのスコア推定と画像分類器の勾配を組み合わせ、拡散モデルとは別の画像分類器を訓練する必要がある。
また、分類器なしでガイダンスを実行できるかどうかという疑問も持ち上がる。
分類器フリーガイダンス(classifier-free guidance)と呼ぶものでは、条件付きと非条件付き拡散モデル(unconditional diffusion model)を共同で訓練し、結果の条件付きと非条件付きスコアの推定値を組み合わせて、分類器ガイダンス(classifier guidance)を用いて得られたものと類似した品質と多様性のトレードオフを得る。
関連論文リスト
- Plug-and-Play Diffusion Distillation [14.359953671470242]
誘導拡散モデルのための新しい蒸留手法を提案する。
オリジナルのテキスト・ツー・イメージモデルが凍結されている間、外部の軽量ガイドモデルがトレーニングされる。
提案手法は,クラス化なしガイド付きラテント空間拡散モデルの推論をほぼ半減することを示す。
論文 参考訳(メタデータ) (2024-06-04T04:22:47Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Diffusion-TTA: Test-time Adaptation of Discriminative Models via
Generative Feedback [97.0874638345205]
生成モデルは、識別モデルのための優れたテストタイムアダプタになり得る。
提案手法であるDiffusion-TTAは,事前学習した判別モデルを,テストセットの各未学習例に適応させる。
拡散-TTAは,様々な大規模事前学習型判別モデルの精度を著しく向上させることを示した。
論文 参考訳(メタデータ) (2023-11-27T18:59:53Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
拡散モデルは、画像生成、復調、塗装、超解像、操作などの最先端の手法として注目されている。
本稿では,これらの埋め込みは識別情報を含むため,ノイズ予測タスクを超えて有用であり,分類にも活用できることを示す。
注意深い特徴選択とプーリングにより、拡散モデルは、分類タスクにおいて同等な生成的識別的手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-07-17T17:59:40Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
データの合成と分類を可能にする統合機械学習モデルは、多くの場合、それらのタスク間の不均一なパフォーマンスを提供するか、トレーニングが不安定である。
それらの目的間のパラメータ化を共用した安定な連立エンドツーエンドトレーニングを可能にする分類器を用いて,バニラ拡散モデルを拡張した。
結果として得られた共同拡散モデルは、評価された全てのベンチマークにおいて、分類と生成品質の両方の観点から、最近の最先端のハイブリッド手法よりも優れている。
論文 参考訳(メタデータ) (2023-01-31T13:29:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。