Classifier-Free Diffusion Guidance
- URL: http://arxiv.org/abs/2207.12598v1
- Date: Tue, 26 Jul 2022 01:42:07 GMT
- Title: Classifier-Free Diffusion Guidance
- Authors: Jonathan Ho, Tim Salimans
- Abstract summary: guidance is a recently introduced method of trade off mode coverage and sample fidelity in conditional diffusion models.
We show that guidance can be indeed performed by a pure generative model without such a classifier.
We combine the resulting conditional and unconditional score estimates to attain a trade-off between sample quality and diversity.
- Score: 17.355749359987648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifier guidance is a recently introduced method to trade off mode
coverage and sample fidelity in conditional diffusion models post training, in
the same spirit as low temperature sampling or truncation in other types of
generative models. Classifier guidance combines the score estimate of a
diffusion model with the gradient of an image classifier and thereby requires
training an image classifier separate from the diffusion model. It also raises
the question of whether guidance can be performed without a classifier. We show
that guidance can be indeed performed by a pure generative model without such a
classifier: in what we call classifier-free guidance, we jointly train a
conditional and an unconditional diffusion model, and we combine the resulting
conditional and unconditional score estimates to attain a trade-off between
sample quality and diversity similar to that obtained using classifier
guidance.
Related papers
- Plug-and-Play Diffusion Distillation [14.359953671470242]
We propose a new distillation approach for guided diffusion models.
An external lightweight guide model is trained while the original text-to-image model remains frozen.
We show that our method reduces the inference of classifier-free guided latent-space diffusion models by almost half.
arXiv Detail & Related papers (2024-06-04T04:22:47Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Diffusion-TTA: Test-time Adaptation of Discriminative Models via
Generative Feedback [97.0874638345205]
generative models can be great test-time adapters for discriminative models.
Our method, Diffusion-TTA, adapts pre-trained discriminative models to each unlabelled example in the test set.
We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models.
arXiv Detail & Related papers (2023-11-27T18:59:53Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train.
We extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives.
The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks.
arXiv Detail & Related papers (2023-01-31T13:29:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.