Learning Data Representations with Joint Diffusion Models
- URL: http://arxiv.org/abs/2301.13622v2
- Date: Wed, 5 Apr 2023 13:09:54 GMT
- Title: Learning Data Representations with Joint Diffusion Models
- Authors: Kamil Deja, Tomasz Trzcinski, Jakub M. Tomczak
- Abstract summary: Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train.
We extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives.
The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks.
- Score: 20.25147743706431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint machine learning models that allow synthesizing and classifying data
often offer uneven performance between those tasks or are unstable to train. In
this work, we depart from a set of empirical observations that indicate the
usefulness of internal representations built by contemporary deep
diffusion-based generative models not only for generating but also predicting.
We then propose to extend the vanilla diffusion model with a classifier that
allows for stable joint end-to-end training with shared parameterization
between those objectives. The resulting joint diffusion model outperforms
recent state-of-the-art hybrid methods in terms of both classification and
generation quality on all evaluated benchmarks. On top of our joint training
approach, we present how we can directly benefit from shared generative and
discriminative representations by introducing a method for visual
counterfactual explanations.
Related papers
- Joint Diffusion models in Continual Learning [4.013156524547073]
We introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models.
Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model.
We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting.
arXiv Detail & Related papers (2024-11-12T22:35:44Z) - Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction.
For sampling, we combine anti-penetration and synthesis-free guidance to enable plausible generation.
Our method significantly outperforms baseline generative models in terms of plausibility and diversity.
arXiv Detail & Related papers (2024-03-26T06:35:55Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Exploring Compositional Visual Generation with Latent Classifier
Guidance [19.48538300223431]
We train latent diffusion models and auxiliary latent classifiers to facilitate non-linear navigation of latent representation generation.
We show that such conditional generation achieved by latent classifier guidance provably maximizes a lower bound of the conditional log probability during training.
We show that this paradigm based on latent classifier guidance is agnostic to pre-trained generative models, and present competitive results for both image generation and sequential manipulation of real and synthetic images.
arXiv Detail & Related papers (2023-04-25T03:02:58Z) - Diffusing Gaussian Mixtures for Generating Categorical Data [21.43283907118157]
We propose a generative model for categorical data based on diffusion models with a focus on high-quality sample generation.
Our method of evaluation highlights the capabilities and limitations of different generative models for generating categorical data.
arXiv Detail & Related papers (2023-03-08T14:55:32Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - A Relational Model for One-Shot Classification [80.77724423309184]
We show that a deep learning model with built-in inductive bias can bring benefits to sample-efficient learning, without relying on extensive data augmentation.
The proposed one-shot classification model performs relational matching of a pair of inputs in the form of local and pairwise attention.
arXiv Detail & Related papers (2021-11-08T07:53:12Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
arXiv Detail & Related papers (2021-08-12T17:44:51Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.