論文の概要: CFLIT: Coexisting Federated Learning and Information Transfer
- arxiv url: http://arxiv.org/abs/2207.12884v3
- Date: Wed, 5 Apr 2023 07:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 16:24:07.198223
- Title: CFLIT: Coexisting Federated Learning and Information Transfer
- Title(参考訳): CFLIT: フェデレーションラーニングと情報伝達の共存
- Authors: Zehong Lin, Hang Liu, Ying-Jun Angela Zhang
- Abstract要約: 本研究では,モバイルエッジネットワークにおける無線放送と従来型情報伝達(IT)の共存性について検討する。
FLとITデバイスがOFDMシステムで無線スペクトルを共有するCFLIT(Commanded Learning and Information Transfer)通信フレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.30671838758503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future wireless networks are expected to support diverse mobile services,
including artificial intelligence (AI) services and ubiquitous data
transmissions. Federated learning (FL), as a revolutionary learning approach,
enables collaborative AI model training across distributed mobile edge devices.
By exploiting the superposition property of multiple-access channels,
over-the-air computation allows concurrent model uploading from massive devices
over the same radio resources, and thus significantly reduces the communication
cost of FL. In this paper, we study the coexistence of over-the-air FL and
traditional information transfer (IT) in a mobile edge network. We propose a
coexisting federated learning and information transfer (CFLIT) communication
framework, where the FL and IT devices share the wireless spectrum in an OFDM
system. Under this framework, we aim to maximize the IT data rate and guarantee
a given FL convergence performance by optimizing the long-term radio resource
allocation. A key challenge that limits the spectrum efficiency of the
coexisting system lies in the large overhead incurred by frequent communication
between the server and edge devices for FL model aggregation. To address the
challenge, we rigorously analyze the impact of the computation-to-communication
ratio on the convergence of over-the-air FL in wireless fading channels. The
analysis reveals the existence of an optimal computation-to-communication ratio
that minimizes the amount of radio resources needed for over-the-air FL to
converge to a given error tolerance. Based on the analysis, we propose a
low-complexity online algorithm to jointly optimize the radio resource
allocation for both the FL devices and IT devices. Extensive numerical
simulations verify the superior performance of the proposed design for the
coexistence of FL and IT devices in wireless cellular systems.
- Abstract(参考訳): 将来の無線ネットワークは、人工知能(AI)サービスやユビキタスデータ送信など、多様なモバイルサービスをサポートする予定である。
革命的学習アプローチとしてのフェデレーション学習(FL)は、分散モバイルデバイス間の協調AIモデルトレーニングを可能にする。
マルチアクセスチャネルの重ね合わせ特性を利用することで、over-the-air計算は、同じ無線リソース上の大規模デバイスからの並列モデルアップロードを可能にするため、flの通信コストを大幅に削減する。
本稿では,モバイルエッジネットワークにおけるオンザエアflと従来の情報転送(it)の共存について検討する。
本稿では,ofdmシステムにおいて,flとitデバイスが無線帯域を共有するcflit(federated learning and information transfer)通信フレームワークを提案する。
本フレームワークでは,長期無線リソース割り当てを最適化することにより,ITデータレートを最大化し,所定のFL収束性能を保証することを目的とする。
既存のシステムのスペクトル効率を制限する重要な課題は、FLモデルアグリゲーションのためのサーバとエッジデバイス間の頻繁な通信によって生じる大きなオーバーヘッドにある。
この課題に対処するために,無線フェージングチャネルにおける計算通信比が無線flの収束に与える影響を厳密に解析する。
この分析により,無線リソースの蓄積量を最小限に抑えるための最適計算対通信比の存在が明らかになった。
そこで本研究では,FL機器とIT機器の無線リソース割り当てを協調的に最適化する,低複雑さオンラインアルゴリズムを提案する。
広汎な数値シミュレーションにより,無線セルシステムにおけるFLとITデバイス共存のための設計の優れた性能を検証した。
関連論文リスト
- Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Energy and Spectrum Efficient Federated Learning via High-Precision
Over-the-Air Computation [26.499025986273832]
フェデレートラーニング(FL)は、データをローカルに保持しながら、モバイルデバイスが共同で共有予測モデルを学ぶことを可能にする。
モバイルデバイス上でFLを実際にデプロイする上で,2つの大きな研究課題がある。
FLにおける局所モデル更新のスペクトル効率向上のためのマルチビットオーバー・ザ・エアコン(M-AirComp)手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T14:47:21Z) - Resource Allocation for Compression-aided Federated Learning with High
Distortion Rate [3.7530276852356645]
我々は、歪み率、参加IoTデバイス数、収束率の間の最適化支援FL問題を定式化する。
参加するIoTデバイスを積極的に制御することにより、通信効率を維持しながら圧縮支援FLのトレーニングばらつきを回避することができる。
論文 参考訳(メタデータ) (2022-06-02T05:00:37Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
フェデレートラーニング(FL)は、デバイスの分散コンピューティング機能を活用した効率的なコミュニケーションとコンピューティングのための重要な実現手段である。
本稿では、FLと幅調整可能なスリムブルニューラルネットワーク(SNN)を統合した新しい学習フレームワークを提案する。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2022-03-26T15:06:13Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
本稿では,2つの相乗的技術,フェデレートラーニング(FL)と幅調整可能なスリムブルニューラルネットワーク(SNN)を統合することを目的とする。
FLは、ローカルに訓練されたモバイルデバイスのモデルを交換することによって、データのプライバシを保護している。しかしながら、SNNは、特に時間変化のあるチャネル条件との無線接続下では、非自明である。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:17:17Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
資源制約のある無線ネットワーク上でのフェデレート学習(FL)の収束に対する推定誤差の影響について検討する。
資源制約のある無線ネットワーク上でFL収束を改善する手法として再送信を提案する。
論文 参考訳(メタデータ) (2021-11-19T15:17:15Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
我々は,デバイス選択,無線トランシーバ設計,RIS構成を協調的に最適化する統一的なコミュニケーション学習最適化問題を開発した。
数値実験により,提案手法は最先端の手法と比較して,学習精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-11-20T08:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。