論文の概要: Detection of road traffic crashes based on collision estimation
- arxiv url: http://arxiv.org/abs/2207.12886v1
- Date: Tue, 26 Jul 2022 13:21:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-27 12:53:45.518376
- Title: Detection of road traffic crashes based on collision estimation
- Title(参考訳): 衝突推定に基づく道路交通事故の検出
- Authors: Mohamed Essam, Nagia M. Ghanem and Mohamed A. Ismail
- Abstract要約: フレームワークは5つのモジュールで構成されている。
主な目的は、誤報の少ない精度で高い精度を達成し、パイプライニング技術に基づく単純なシステムを実装することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a framework based on computer vision that can detect
road traffic crashes (RCTs) by using the installed surveillance/CCTV camera and
report them to the emergency in real-time with the exact location and time of
occurrence of the accident. The framework is built of five modules. We start
with the detection of vehicles by using YOLO architecture; The second module is
the tracking of vehicles using MOSSE tracker, Then the third module is a new
approach to detect accidents based on collision estimation. Then the fourth
module for each vehicle, we detect if there is a car accident or not based on
the violent flow descriptor (ViF) followed by an SVM classifier for crash
prediction. Finally, in the last stage, if there is a car accident, the system
will send a notification to the emergency by using a GPS module that provides
us with the location, time, and date of the accident to be sent to the
emergency with the help of the GSM module. The main objective is to achieve
higher accuracy with fewer false alarms and to implement a simple system based
on pipelining technique.
- Abstract(参考訳): 本稿では,設置された監視カメラ/cctvカメラを用いて道路交通事故(rcts)を検知し,事故発生時刻と正確な位置をリアルタイムで緊急通報するコンピュータビジョンに基づく枠組みを提案する。
フレームワークは5つのモジュールで構成されている。
第2のモジュールはmosseトラッカを使用した車両の追跡であり,第3のモジュールは衝突推定に基づく事故検出のための新しいアプローチである。
そして、各車両の4番目のモジュールは、暴力的フロー記述子(ViF)に基づいて自動車事故の有無を検知し、その後SVM分類器で事故予測を行う。
最後に、最終段階では、自動車事故が発生した場合、gsmモジュールの助けを借りて、事故の場所、時間、日付を緊急に送信するgpsモジュールを使用して、システムが緊急に通知を送ります。
主な目的は、誤報を少なくして高い精度を実現し、パイプライン技術に基づく単純なシステムを実装することである。
関連論文リスト
- Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
本研究は、ルイジアナ州で最も急激な高速道路であるI-10の車両軌跡データと交通事故データを用いている。
さまざまな機械学習アルゴリズムを使用して、下流の道路区間で事故に遭遇する可能性のある軌道を検出する。
その結果,ランダムフォレストモデルでは,適切なリコール値と識別能力を持つインシデントを予測する上で,最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-15T00:51:48Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
事故が起こる前の事故と近距離事故には差はない。
我々の貢献は、事故の定義を再定義し、DADA-2000データセットにおける事故の不整合を再注釈することである。
提案手法は、条件付きスタイル変換(CST)と分離可能な3次元畳み込みニューラルネットワーク(S3D)の2つの異なるコンポーネントを統合する。
論文 参考訳(メタデータ) (2023-01-06T22:04:47Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
本研究では,視覚的観察と運転者の注意に対する人為的な文章記述の認識を効果的に活用し,モデルトレーニングを容易にする認知事故予測手法を提案する。
CAPは、注意テキスト〜ビジョンシフト融合モジュール、注意シーンコンテキスト転送モジュール、運転注意誘導事故予測モジュールによって構成される。
我々は,1,727件の事故ビデオと219万フレーム以上の大規模ベンチマークを構築した。
論文 参考訳(メタデータ) (2022-12-19T11:43:02Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
ダッシュボードカメラを用いて車両事故を検出する自動運転支援システムを提案する。
このフレームワークは、ダッシュカム映像のカスタムデータセットでテストされ、誤報率を低く保ちながら、高い事故検出率を達成する。
論文 参考訳(メタデータ) (2020-12-20T08:51:10Z) - Vehicle Route Prediction through Multiple Sensors Data Fusion [0.0]
フレームワークは2つのモジュールで構成される。
ディープラーニングを用いて車両ナンバーの認識を行うフレームワークの最初のモジュール。
機械学習の教師付き学習アルゴリズムを用いた第2モジュールは、車両の経路を予測する。
論文 参考訳(メタデータ) (2020-08-30T08:14:11Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。