Contextual Information and Commonsense Based Prompt for Emotion
Recognition in Conversation
- URL: http://arxiv.org/abs/2207.13254v1
- Date: Wed, 27 Jul 2022 02:34:05 GMT
- Title: Contextual Information and Commonsense Based Prompt for Emotion
Recognition in Conversation
- Authors: Jingjie Yi, Deqing Yang, Siyu Yuan, Caiyan Cao, Zhiyao Zhang and
Yanghua Xiao
- Abstract summary: Emotion recognition in conversation (ERC) aims to detect the emotion for each utterance in a given conversation.
Recent ERC models have leveraged pre-trained language models (PLMs) with the paradigm of pre-training and fine-tuning to obtain good performance.
We propose a novel ERC model CISPER with the new paradigm of prompt and language model (LM) tuning.
- Score: 14.651642872901496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion recognition in conversation (ERC) aims to detect the emotion for each
utterance in a given conversation. The newly proposed ERC models have leveraged
pre-trained language models (PLMs) with the paradigm of pre-training and
fine-tuning to obtain good performance. However, these models seldom exploit
PLMs' advantages thoroughly, and perform poorly for the conversations lacking
explicit emotional expressions. In order to fully leverage the latent knowledge
related to the emotional expressions in utterances, we propose a novel ERC
model CISPER with the new paradigm of prompt and language model (LM) tuning.
Specifically, CISPER is equipped with the prompt blending the contextual
information and commonsense related to the interlocutor's utterances, to
achieve ERC more effectively. Our extensive experiments demonstrate CISPER's
superior performance over the state-of-the-art ERC models, and the
effectiveness of leveraging these two kinds of significant prompt information
for performance gains. To reproduce our experimental results conveniently,
CISPER's sourcecode and the datasets have been shared at
https://github.com/DeqingYang/CISPER.
Related papers
- Context-Aware Siamese Networks for Efficient Emotion Recognition in Conversation [1.1095648823126325]
We propose a way to model the conversational context that we incorporate into a metric learning training strategy.
Using metric learning through a Siamese Network architecture, we achieve 57.71 in macro F1 score for emotion classification in conversation.
arXiv Detail & Related papers (2024-04-17T07:36:40Z) - Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive
Learning [71.8876256714229]
We propose an entity-based contrastive learning framework for improving the robustness of knowledge-grounded dialogue systems.
Our method achieves new state-of-the-art performance in terms of automatic evaluation scores.
arXiv Detail & Related papers (2024-01-09T05:16:52Z) - Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion
Recognition [6.988000604392974]
Emotion Recognition in Conversation (ERC) has been widely studied due to its importance in developing emotion-aware empathetic machines.
We propose a derivative-free optimization method called Cross-Task Prompt Tuning (CTPT) for few-shot conversational emotion recognition.
arXiv Detail & Related papers (2023-10-23T06:46:03Z) - Fuzzy Fingerprinting Transformer Language-Models for Emotion Recognition
in Conversations [0.7874708385247353]
We propose to combine the two approaches to perform Emotion Recognition in Conversations (ERC)
We feed utterances and their previous conversational turns to a pre-trained RoBERTa, obtaining contextual embedding utterance representations.
We validate our approach on the widely used DailyDialog ERC benchmark dataset.
arXiv Detail & Related papers (2023-09-08T12:26:01Z) - Deep Emotion Recognition in Textual Conversations: A Survey [0.8602553195689513]
New applications and implementation scenarios present novel challenges and opportunities.
These range from leveraging the conversational context, speaker, and emotion dynamics modelling, to interpreting common sense expressions.
This survey emphasizes the advantage of leveraging techniques to address unbalanced data.
arXiv Detail & Related papers (2022-11-16T19:42:31Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - An Exploration of Self-Supervised Pretrained Representations for
End-to-End Speech Recognition [98.70304981174748]
We focus on the general applications of pretrained speech representations, on advanced end-to-end automatic speech recognition (E2E-ASR) models.
We select several pretrained speech representations and present the experimental results on various open-source and publicly available corpora for E2E-ASR.
arXiv Detail & Related papers (2021-10-09T15:06:09Z) - An Attribute-Aligned Strategy for Learning Speech Representation [57.891727280493015]
We propose an attribute-aligned learning strategy to derive speech representation that can flexibly address these issues by attribute-selection mechanism.
Specifically, we propose a layered-representation variational autoencoder (LR-VAE), which factorizes speech representation into attribute-sensitive nodes.
Our proposed method achieves competitive performances on identity-free SER and a better performance on emotionless SV.
arXiv Detail & Related papers (2021-06-05T06:19:14Z) - Emotion Dynamics Modeling via BERT [7.3785751096660555]
We develop a series of BERT-based models to capture the inter-interlocutor and intra-interlocutor dependencies of the conversational emotion dynamics.
Our proposed models can attain around 5% and 10% improvement over the state-of-the-art baselines, respectively.
arXiv Detail & Related papers (2021-04-15T05:58:48Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z) - Exploiting Unsupervised Data for Emotion Recognition in Conversations [76.01690906995286]
Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations.
The available supervised data for the ERC task is limited.
We propose a novel approach to leverage unsupervised conversation data.
arXiv Detail & Related papers (2020-10-02T13:28:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.