Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion
Recognition
- URL: http://arxiv.org/abs/2310.14614v1
- Date: Mon, 23 Oct 2023 06:46:03 GMT
- Title: Efficient Cross-Task Prompt Tuning for Few-Shot Conversational Emotion
Recognition
- Authors: Yige Xu, Zhiwei Zeng, Zhiqi Shen
- Abstract summary: Emotion Recognition in Conversation (ERC) has been widely studied due to its importance in developing emotion-aware empathetic machines.
We propose a derivative-free optimization method called Cross-Task Prompt Tuning (CTPT) for few-shot conversational emotion recognition.
- Score: 6.988000604392974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion Recognition in Conversation (ERC) has been widely studied due to its
importance in developing emotion-aware empathetic machines. The rise of
pre-trained language models (PLMs) has further pushed the limit of ERC
performance. However, most recent works on ERC using PLMs are heavily
data-driven, and requires fine-tuning the entire PLMs. To improve both sample
and computational efficiency, we propose a derivative-free optimization method
called Cross-Task Prompt Tuning (CTPT) for few-shot conversational emotion
recognition. Unlike existing methods that learn independent knowledge from
individual tasks, CTPT leverages sharable cross-task knowledge by exploiting
external knowledge from other source tasks to improve learning performance
under the few-shot setting. Moreover, CTPT only needs to optimize a vector
under the low intrinsic dimensionality without gradient, which is highly
parameter-efficient compared with existing approaches. Experiments on five
different contextual conversation datasets demonstrate that our CTPT method has
superior results on both few-shot scenarios and zero-shot transfers.
Related papers
- Active Learning with Task Adaptation Pre-training for Speech Emotion Recognition [17.59356583727259]
Speech emotion recognition (SER) has garnered increasing attention due to its wide range of applications.
We propose an active learning (AL)-based fine-tuning framework for SER, called textscAfter.
Our proposed method improves accuracy by 8.45% and reduces time consumption by 79%.
arXiv Detail & Related papers (2024-05-01T04:05:29Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - How Does In-Context Learning Help Prompt Tuning? [55.78535874154915]
Fine-tuning large language models is becoming ever more impractical due to their rapidly-growing scale.
This motivates the use of parameter-efficient adaptation methods such as prompt tuning (PT), which adds a small number of tunable embeddings to an otherwise frozen model.
Recently, Singhal et al. (2022) propose instruction prompt tuning'' (IPT), which combines PT with ICL by concatenating a natural language demonstration with learned prompt embeddings.
arXiv Detail & Related papers (2023-02-22T17:45:12Z) - Contextual Information and Commonsense Based Prompt for Emotion
Recognition in Conversation [14.651642872901496]
Emotion recognition in conversation (ERC) aims to detect the emotion for each utterance in a given conversation.
Recent ERC models have leveraged pre-trained language models (PLMs) with the paradigm of pre-training and fine-tuning to obtain good performance.
We propose a novel ERC model CISPER with the new paradigm of prompt and language model (LM) tuning.
arXiv Detail & Related papers (2022-07-27T02:34:05Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
We present CP-Tuning, the first end-to-end Contrastive Prompt Tuning framework for fine-tuning Language Models.
It is integrated with the task-invariant continuous prompt encoding technique with fully trainable prompt parameters.
Experiments over a variety of language understanding tasks used in IR systems and different PLMs show that CP-Tuning outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-01T02:24:24Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
We introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimize the minimum Levenshtein distance (MLD) through explicit editing actions.
RISE is able to pay attention to tokens that are related to conversational characteristics.
Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-06-30T08:44:19Z) - Weighted Training for Cross-Task Learning [71.94908559469475]
We introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning.
We show that TAWT is easy to implement, is computationally efficient, requires little hyper parameter tuning, and enjoys non-asymptotic learning-theoretic guarantees.
As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning.
arXiv Detail & Related papers (2021-05-28T20:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.