Digital-analog co-design of the Harrow-Hassidim-Lloyd algorithm
- URL: http://arxiv.org/abs/2207.13528v1
- Date: Wed, 27 Jul 2022 13:58:13 GMT
- Title: Digital-analog co-design of the Harrow-Hassidim-Lloyd algorithm
- Authors: Ana Martin, Ruben Ibarrondo, and Mikel Sanz
- Abstract summary: Harrow-Hassidim-Lloyd quantum algorithm was proposed to solve linear systems of equations $Avecx = vecb$.
There is not an explicit quantum circuit for the subroutine which maps the inverse of the problem matrix $A$ into an ancillary qubit.
We present a co-designed quantum processor which reduces the depth of the algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Harrow-Hassidim-Lloyd quantum algorithm was proposed to solve linear
systems of equations $A\vec{x} = \vec{b}$ and it is the core of various
applications. However, there is not an explicit quantum circuit for the
subroutine which maps the inverse of the problem matrix $A$ into an ancillary
qubit. This makes challenging the implementation in current quantum devices,
forcing us to use hybrid approaches. Here, we propose a systematic manner to
implement this subroutine, which can be adapted to other functions $f(A)$ of
the matrix $A$, we present a co-designed quantum processor which reduces the
depth of the algorithm, and we introduce its digital-analog implementation. The
depth of our proposal scales with the precision $\epsilon$ as
$\mathcal{O}(\epsilon^{-1})$, which is bounded by the number of samples allowed
for a certain experiment. The co-design of the Harrow-Hassidim-Lloyd algorithm
leads to a "kite-like" architecture, which allows us to reduce the number of
required SWAP gates. Finally, merging a co-design quantum processor
architecture with a digital-analog implementation contributes to the reduction
of noise sources during the experimental realization of the algorithm.
Related papers
- A quantum-classical hybrid algorithm with Ising model for the learning with errors problem [13.06030390635216]
We propose a quantum-classical hybrid algorithm with Ising model (HAWI) to address the Learning-With-Errors (LWE) problem.
We identify the low-energy levels of the Hamiltonian to extract the solution, making it suitable for implementation on current noisy intermediate-scale quantum (NISQ) devices.
Our algorithm is iterations, and its time complexity depends on the specific quantum algorithm employed to find the Hamiltonian's low-energy levels.
arXiv Detail & Related papers (2024-08-15T05:11:35Z) - Logarithmic-Depth Quantum Circuits for Hamming Weight Projections [3.481985817302898]
We propose several quantum algorithms that realize a coherent Hamming weight projective measurement on an input pure state.
We analyze a depth-width trade-off for the corresponding quantum circuits, allowing for a depth reduction of the circuits at the cost of more control qubits.
arXiv Detail & Related papers (2024-04-10T16:35:36Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Two quantum algorithms for solving the one-dimensional
advection-diffusion equation [0.0]
Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection-diffusion equation with periodic boundary conditions.
Their accuracy and performance with increasing qubit number are compared point-by-point with each other.
arXiv Detail & Related papers (2023-12-30T21:23:15Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for
Multi-Block Bilevel Optimization [43.74656748515853]
Non-stationary multi-block bilevel optimization problems involve $mgg 1$ lower level problems and have important applications in machine learning.
We aim to achieve three properties for our algorithm: a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling $I$ samples for each sampled block per-iteration; and (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator.
arXiv Detail & Related papers (2023-05-30T04:10:11Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.