Multi-layer Representation Learning for Robust OOD Image Classification
- URL: http://arxiv.org/abs/2207.13678v1
- Date: Wed, 27 Jul 2022 17:46:06 GMT
- Title: Multi-layer Representation Learning for Robust OOD Image Classification
- Authors: Aristotelis Ballas and Christos Diou
- Abstract summary: We argue that extracting features from a CNN's intermediate layers can assist in the model's final prediction.
Specifically, we adapt the Hypercolumns method to a ResNet-18 and find a significant increase in the model's accuracy, when evaluating on the NICO dataset.
- Score: 3.1372269816123994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks have become the norm in image classification.
Nevertheless, their difficulty to maintain high accuracy across datasets has
become apparent in the past few years. In order to utilize such models in
real-world scenarios and applications, they must be able to provide trustworthy
predictions on unseen data. In this paper, we argue that extracting features
from a CNN's intermediate layers can assist in the model's final prediction.
Specifically, we adapt the Hypercolumns method to a ResNet-18 and find a
significant increase in the model's accuracy, when evaluating on the NICO
dataset.
Related papers
- Graph Mining under Data scarcity [6.229055041065048]
We propose an Uncertainty Estimator framework that can be applied on top of any generic Graph Neural Networks (GNNs)
We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting.
Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.
arXiv Detail & Related papers (2024-06-07T10:50:03Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Robustifying Deep Vision Models Through Shape Sensitization [19.118696557797957]
We propose a simple, lightweight adversarial augmentation technique that explicitly incentivizes the network to learn holistic shapes.
Our augmentations superpose edgemaps from one image onto another image with shuffled patches, using a randomly determined mixing proportion.
We show that our augmentations significantly improve classification accuracy and robustness measures on a range of datasets and neural architectures.
arXiv Detail & Related papers (2022-11-14T11:17:46Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.