Graph Mining under Data scarcity
- URL: http://arxiv.org/abs/2406.04825v2
- Date: Tue, 11 Jun 2024 13:33:16 GMT
- Title: Graph Mining under Data scarcity
- Authors: Appan Rakaraddi, Lam Siew-Kei, Mahardhika Pratama, Marcus de Carvalho,
- Abstract summary: We propose an Uncertainty Estimator framework that can be applied on top of any generic Graph Neural Networks (GNNs)
We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting.
Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.
- Score: 6.229055041065048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multitude of deep learning models have been proposed for node classification in graphs. However, they tend to perform poorly under labeled-data scarcity. Although Few-shot learning for graphs has been introduced to overcome this problem, the existing models are not easily adaptable for generic graph learning frameworks like Graph Neural Networks (GNNs). Our work proposes an Uncertainty Estimator framework that can be applied on top of any generic GNN backbone network (which are typically designed for supervised/semi-supervised node classification) to improve the node classification performance. A neural network is used to model the Uncertainty Estimator as a probability distribution rather than probabilistic discrete scalar values. We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting. Our work demonstrates that implementation of the uncertainty estimator on a GNN backbone network improves the classification accuracy under Few-shot setting without any meta-learning specific architecture. We conduct experiments on multiple datasets under different Few-shot settings and different GNN-based backbone networks. Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.
Related papers
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
We introduce GNNRank, a modeling framework compatible with any GNN capable of learning digraph embeddings.
We show that our methods attain competitive and often superior performance compared with existing approaches.
arXiv Detail & Related papers (2022-02-01T04:19:50Z) - Distance-wise Prototypical Graph Neural Network in Node Imbalance
Classification [9.755229198654922]
We propose a novel Distance-wise Prototypical Graph Neural Network (DPGNN) for imbalanced graph data.
The proposed DPGNN almost always significantly outperforms all other baselines, which demonstrates its effectiveness in imbalanced node classification.
arXiv Detail & Related papers (2021-10-22T19:43:15Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) is designed to account for distributional differences between biased training data and the graph's true inference distribution.
We show that SR-GNN outperforms other GNN baselines by accuracy, eliminating at least (40%) of the negative effects introduced by biased training data.
arXiv Detail & Related papers (2021-08-02T18:00:38Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
We study the robustness of graph neural networks (GNNs) for graph classification tasks.
In this paper, we propose an adversarial attack framework for the graph classification task.
To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
arXiv Detail & Related papers (2020-05-23T16:19:47Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.