Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification
- URL: http://arxiv.org/abs/2207.13728v4
- Date: Thu, 14 Nov 2024 15:39:09 GMT
- Title: Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification
- Authors: Tomás Ramos, Álvaro Gómez-León, Juan José García-Ripoll, Alejandro González-Tudela, Diego Porras,
- Abstract summary: Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
- Score: 39.58317527488534
- License:
- Abstract: Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy. However, designing an ideal amplifier is challenging, as it must cover a wide frequency range, add minimal noise, and operate directionally - amplifying signals only in the observer's direction while protecting the source from environmental interference. In this work, we demonstrate that an array of non-linearly coupled Josephson parametric amplifiers (JPAs) can collectively function as a directional, broadband quantum amplifier by harnessing topological effects. By applying a collective four-wave-mixing pump with inhomogeneous amplitudes and linearly increasing phase, we break time-reversal symmetry in the JPA array and stabilize a topological amplification regime where signals are exponentially amplified in one direction and exponentially suppressed in the opposite. We show that compact devices with few sites $N\sim 11-17$ can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz, and reverse isolation suppressing backward noise by more than 30 dB across all frequencies. The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder, effectively suppressing gain ripples. The amplifier's intrinsic directionality eliminates the need for external isolators, paving the way for fully on-chip, near-ideal superconducting pre-amplifiers.
Related papers
- A Traveling Wave Parametric Amplifier Isolator [0.0]
Built-in isolation, as well as gain, would address their primary limitation: lack of true directionality.
We demonstrate a Josephson-junction-based traveling-wave parametric amplifier isolator.
arXiv Detail & Related papers (2024-06-28T08:51:22Z) - Broadband parametric amplification in DARTWARS [64.98268713737]
Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth.
The DARTWARS project aims to develop a KITWPA capable of achieving $20,$ dB of amplification.
The measurements revealed an average amplification of approximately $9,$dB across a $2,$GHz bandwidth for a KITWPA spanning $17,$mm in length.
arXiv Detail & Related papers (2024-02-19T10:57:37Z) - Broadband CPW-based impedance-transformed Josephson parametric amplifier [13.002501537530513]
We present a device based on the broadband impedance-transformed Josephson parametric amplifier (IMPA)
The device shows an instantaneous bandwidth of 700(200) MHz for 15(20) dB gain with an average saturation power of -110 dBm and near quantum-limited added noise.
arXiv Detail & Related papers (2023-10-26T01:04:55Z) - Peripheral circuits for ideal performance of a travelling-wave
parametric amplifier [0.0]
We investigate the required peripheral circuits to enable ideal performance for a high-gain travelling-wave parametric amplifier (TWPA) based on three-wave mixing (3WM)
By embedding the TWPA in a network of superconducting diplexers, hybrid couplers and impedance matching networks, the amplifier can deliver a high stable gain with near-quantum-limited noise performance, with suppressed gain ripples.
We demonstrate how the WIF-TWPAs can be used to construct controllable isolators with over 40 dB isolation over the full 4-8 GHz band.
arXiv Detail & Related papers (2023-10-18T11:57:15Z) - Demonstration of a Quantum Noise Limited Traveling-Wave Parametric
Amplifier [0.0]
Recent progress in quantum computing and the development of novel detector technologies for astrophysics is driving the need for high-gain, broadband, and quantum-limited amplifiers.
We present a purely traveling-wave parametric amplifier (TWPA) using an inverted NbTiN microstrip and amorphous Silicon dielectric.
arXiv Detail & Related papers (2023-06-19T15:45:55Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Broadband SNAIL parametric amplifier with microstrip impedance
transformer [0.0]
We present a quantum-limited 3-wave-mixing parametric amplifier based on superconducting nonlinear asymmetric inductive elements.
operating in a current-pumped mode, we experimentally demonstrate an average gain of $17 dB$ across $300 MHz$ bandwidth.
The amplifier can be fabricated using a simple technology with just a one e-beam lithography step.
arXiv Detail & Related papers (2022-10-27T11:15:58Z) - Numerical analysis of a three-wave-mixing Josephson traveling-wave
parametric amplifier with engineered dispersion loadings [62.997667081978825]
Recently proposed Josephson traveling-wave parametric amplifier has great potential in achieving a gain of 20 dB and a flat bandwidth of at least 4 GHz.
We model the advanced JTWPA circuit with periodic modulation of the circuit parameters.
engineered dispersion loadings allow achieving sufficiently wide $3$ dB-bandwidth from $3$ GHz to $9$ GHz combined with a reasonably small ripple.
arXiv Detail & Related papers (2022-09-22T14:46:04Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.