Squashed entanglement in one-dimensional quantum matter
- URL: http://arxiv.org/abs/2207.13805v1
- Date: Wed, 27 Jul 2022 21:40:53 GMT
- Title: Squashed entanglement in one-dimensional quantum matter
- Authors: Alfonso Maiellaro, Francesco Romeo, Roberta Citro, Fabrizio Illuminati
- Abstract summary: We show that edge squashed entanglement discriminates unambiguously between topological insulators and topological superconductors.
Such topological squashed entanglement is robust under variations of the sample conditions due to disorder or local perturbations.
We show that topological squashed entanglement defines the natural measure of nonlocal correlation patterns in quantum matter.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concept of squashed entanglement between a system edges in
one-dimensional quantum matter. We show that edge squashed entanglement
discriminates unambiguously between topological insulators and topological
superconductors by taking different quantized values, respectively to
Bell-state entanglement and half Bell-state entanglement, depending on the
statistics of the edge modes. Such topological squashed entanglement is robust
under variations of the sample conditions due to disorder or local
perturbations and scales exponentially with the system size, converging
asymptotically to a quantized topological invariant also in the presence of
interactions. By comparing it with the entanglement negativity, we show that
topological squashed entanglement defines the natural measure of nonlocal
correlation patterns in quantum matter. Finally, we discuss issues of
experimental accessibility as well as possible generalizations to higher
dimensions.
Related papers
- Emergent Topology in Many-Body Dissipative Quantum Matter [0.0]
We study the dissipative dynamics of pseudo-Hermitian many-body quantum systems.
We find the same topological features for a wide range of parameters suggesting that they are universal.
In the limit of weak coupling to the bath, topological modes govern the approach to equilibrium.
arXiv Detail & Related papers (2023-11-24T18:15:22Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum Signatures of Topological Phase in Bosonic Quadratic System [0.38850145898707145]
We show that an open bosonic quadratic chain exhibits topology-induced entanglement effect.
When the system is in the topological phase, the edge modes can be entangled in the steady state, while no entanglement appears in the trivial phase.
Our work reveals that the stationary entanglement can be a quantum signature of the topological phase in bosonic systems.
arXiv Detail & Related papers (2023-09-13T15:18:33Z) - Entanglement entropy of higher rank topological phases [0.0]
We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
arXiv Detail & Related papers (2023-02-22T16:06:01Z) - Topological squashed entanglement: nonlocal order parameter for
one-dimensional topological superconductors [0.0]
We show the end-to-end, long-distance, bipartite squashed entanglement between the edges of a many-body system.
For the Kitaev chain in the entire topological phase, the edge squashed entanglement is quantized to log(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase.
Such topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the presence of interactions, and is robust against disorder and local perturbations.
arXiv Detail & Related papers (2022-01-28T10:57:51Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.