Dirac/Weyl-node-induced oscillating Casimir effect
- URL: http://arxiv.org/abs/2207.14078v2
- Date: Wed, 21 Jun 2023 11:17:56 GMT
- Title: Dirac/Weyl-node-induced oscillating Casimir effect
- Authors: Katsumasa Nakayama, Kei Suzuki
- Abstract summary: The Casimir effect is a quantum phenomenon induced by the zero-point energy of relativistic fields confined in a finite-size system.
We show the typical properties of the Casimir effect for relativistic electron fields in Dirac/Weyl semimetals.
We find an oscillation of the Casimir energy as a function of the thickness of the thin film, which stems from the existence of Dirac/Weyl nodes in momentum space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Casimir effect is a quantum phenomenon induced by the zero-point energy
of relativistic fields confined in a finite-size system. This effect for photon
fields has been studied for a long time, while the realization of counterparts
for fermion fields in Dirac/Weyl semimetals is an open question. We
theoretically demonstrate the typical properties of the Casimir effect for
relativistic electron fields in Dirac/Weyl semimetals and show the results from
an effective Hamiltonian for realistic materials such as Cd$_3$As$_2$ and
Na$_3$Bi. We find an oscillation of the Casimir energy as a function of the
thickness of the thin film, which stems from the existence of Dirac/Weyl nodes
in momentum space. Experimentally, such an effect can be observed in thin films
of semimetals, where the thickness dependence of thermodynamic quantities is
affected by the Casimir energy.
Related papers
- Lifshitz formulas for finite-density Casimir effect [0.0]
We generalize the Lifshitz formula to investigate the Casimir effect at finite temperature.
We discuss the typical phenomena of the Casimir effect at finite chemical potential in various systems.
This formula can be applied to the Casimir effect in dense quark matter and Dirac/Weyl semimetals.
arXiv Detail & Related papers (2024-08-15T19:04:23Z) - Dual chiral density wave induced oscillating Casimir effect [0.0]
We investigate what types of Casimir effects can occur from quark fields in dense and thin quark matter.
In particular, in the dual chiral density wave, we find that the Casimir energy oscillates as a function of the thickness of matter.
This oscillating Casimir effect is regarded as an analog of that in Weyl semimetals and is attributed to the Weyl points in the momentum space of quark fields.
arXiv Detail & Related papers (2024-02-27T16:05:21Z) - Casimir effect in axion electrodynamics with lattice regularizations [0.0]
The Casimir effect is induced by the interplay between photon fields and boundary conditions.
We propose a theoretical approach to derive the Casimir effect in axion electrodynamics.
arXiv Detail & Related papers (2023-10-27T12:29:01Z) - Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular
Thin Films [62.997667081978825]
Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries.
We experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere.
We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%.
arXiv Detail & Related papers (2023-06-28T13:44:07Z) - Casimir effect for fermions on the lattice [0.0]
We show that the Casimir effect for the Wilson fermion is similar to that for the continuous Dirac fermion.
We also study contributions from Landau levels under magnetic fields and the Casimir effect for nonrelativistic particle fields on the lattice.
arXiv Detail & Related papers (2023-01-19T11:01:20Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Remnants of the nonrelativistic Casimir effect on the lattice [0.0]
We investigate the Casimir effect for various dispersion relations on the lattice.
We find that Casimir effects for dispersions proportional to an even power of momentum are absent in a long distance but a remnant of the Casimir effect survives in a short distance.
Such a remnant Casimir effect will be experimentally observed in materials with quantum fields on the lattice, such as thin films, narrow nanoribbons, and short nanowires.
arXiv Detail & Related papers (2022-04-26T02:06:30Z) - Interplay between optomechanics and the dynamical Casimir effect [55.41644538483948]
We develop a model of a quantum field confined within a cavity with a movable wall where the position of the wall is quantized.
We obtain a full description of the dynamics of both the quantum field and the confining wall depending on the initial state of the whole system.
arXiv Detail & Related papers (2022-04-22T14:27:30Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.