A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections
- URL: http://arxiv.org/abs/2207.14145v1
- Date: Thu, 28 Jul 2022 15:08:41 GMT
- Title: A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections
- Authors: Pei Li, Huizhong Guo, Shan Bao, Arpan Kusari
- Abstract summary: This study proposes a probabilistic framework for estimating the risk of pedestrian-vehicle conflicts at intersections.
The proposed framework loosens restrictions of constant speed by predicting trajectories using a Gaussian Process Regression.
Real-world LiDAR data collected at an intersection was used to evaluate the performance of the proposed framework.
- Score: 5.8366275205801985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian safety has become an important research topic among various
studies due to the increased number of pedestrian-involved crashes. To evaluate
pedestrian safety proactively, surrogate safety measures (SSMs) have been
widely used in traffic conflict-based studies as they do not require historical
crashes as inputs. However, most existing SSMs were developed based on the
assumption that road users would maintain constant velocity and direction. Risk
estimations based on this assumption are less unstable, more likely to be
exaggerated, and unable to capture the evasive maneuvers of drivers.
Considering the limitations among existing SSMs, this study proposes a
probabilistic framework for estimating the risk of pedestrian-vehicle conflicts
at intersections. The proposed framework loosen restrictions of constant speed
by predicting trajectories using a Gaussian Process Regression and accounts for
the different possible driver maneuvers with a Random Forest model. Real-world
LiDAR data collected at an intersection was used to evaluate the performance of
the proposed framework. The newly developed framework is able to identify all
pedestrian-vehicle conflicts. Compared to the Time-to-Collision, the proposed
framework provides a more stable risk estimation and captures the evasive
maneuvers of vehicles. Moreover, the proposed framework does not require
expensive computation resources, which makes it an ideal choice for real-time
proactive pedestrian safety solutions at intersections.
Related papers
- A Real-time Evaluation Framework for Pedestrian's Potential Risk at Non-Signalized Intersections Based on Predicted Post-Encroachment Time [1.0124625066746595]
In this study, a framework with computer vision technologies and predictive models is developed to evaluate the potential risk of pedestrians in real time.
Initiative is the Predicted Post-Encroachment Time (P-PET), derived from deep learning models capable to predict the arrival time of pedestrians and vehicles at intersections.
arXiv Detail & Related papers (2024-04-24T04:10:05Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
We propose a comprehensive driving risk management framework named RCP-RF based on potential field theory under Connected and Automated Vehicles (CAV) environment.
Different from existing algorithms, the motion tendency between ego and obstacle cars and the pedestrian factor are legitimately considered in the proposed framework.
Empirical studies validate the superiority of our proposed framework against state-of-the-art methods on real-world dataset NGSIM and real AV platform.
arXiv Detail & Related papers (2023-05-04T01:54:37Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
Risk assessment is a central element for the development and validation of Autonomous Vehicles.
Time Headway (TH) and Time-To-Contact (TTC) are commonly used risk metrics and have qualitative relations to occurrence probability.
We present a probabilistic situation risk model based on survival analysis considerations and extend it to naturally incorporate sensory, temporal and behavioral uncertainties.
arXiv Detail & Related papers (2023-03-13T15:22:51Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes.
The system can warn of upcoming risks immediately in the field and improve the safety of risk frequent areas by assessing the safety levels of roads without actual collisions.
arXiv Detail & Related papers (2021-07-26T23:00:56Z) - Pedestrian Emergence Estimation and Occlusion-Aware Risk Assessment for
Urban Autonomous Driving [0.0]
We propose a pedestrian emergence estimation and occlusion-aware risk assessment system for urban autonomous driving.
First, the proposed system utilizes available contextual information, such as visible cars and pedestrians, to estimate pedestrian emergence probabilities in occluded regions.
The proposed controller outperformed the baselines in terms of safety and comfort measures.
arXiv Detail & Related papers (2021-07-06T00:07:09Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
Many real-world problems of interest exhibit non-stationarity, and when stakes are high, the cost associated with a false stationarity assumption may be unacceptable.
We take the first steps towards ensuring safety, with high confidence, for smoothly-varying non-stationary decision problems.
Our proposed method extends a type of safe algorithm, called a Seldonian algorithm, through a synthesis of model-free reinforcement learning with time-series analysis.
arXiv Detail & Related papers (2020-10-23T20:13:51Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.