Low-Complexity Loeffler DCT Approximations for Image and Video Coding
- URL: http://arxiv.org/abs/2207.14463v1
- Date: Fri, 29 Jul 2022 03:56:18 GMT
- Title: Low-Complexity Loeffler DCT Approximations for Image and Video Coding
- Authors: D. F. G. Coelho, R. J. Cintra, F. M. Bayer, S. Kulasekera, A.
Madanayake, P. A. C. Martinez, T. L. T. Silveira, R. S. Oliveira, V. S.
Dimitrov
- Abstract summary: This paper introduces a matrix parametrization method based on the Loeffler discrete cosine transform (DCT) algorithm.
A new class of eight-point DCT approximations was proposed, capable of unifying the mathematical formalism of several eight-point DCT approximations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduced a matrix parametrization method based on the Loeffler
discrete cosine transform (DCT) algorithm. As a result, a new class of
eight-point DCT approximations was proposed, capable of unifying the
mathematical formalism of several eight-point DCT approximations archived in
the literature. Pareto-efficient DCT approximations are obtained through
multicriteria optimization, where computational complexity, proximity, and
coding performance are considered. Efficient approximations and their scaled
16- and 32-point versions are embedded into image and video encoders, including
a JPEG-like codec and H.264/AVC and H.265/HEVC standards. Results are compared
to the unmodified standard codecs. Efficient approximations are mapped and
implemented on a Xilinx VLX240T FPGA and evaluated for area, speed, and power
consumption.
Related papers
- Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity [0.0]
The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Loeve transform (KLT)
We introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms.
Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost.
arXiv Detail & Related papers (2024-10-20T01:20:35Z) - Fast Data-independent KLT Approximations Based on Integer Functions [0.0]
The Karhunen-Loeve transform (KLT) stands as a well-established discrete transform, demonstrating optimal characteristics in data decorrelation and dimensionality reduction.
This paper introduces a category of low-complexity, data-independent KLT approximations, employing a range of round-off functions.
The proposed transforms perform well when compared to the exact KLT and approximations considering classical performance measures.
arXiv Detail & Related papers (2024-10-11T20:05:05Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
Vision transformers (ViTs) have demonstrated their superior accuracy for computer vision tasks compared to convolutional neural networks (CNNs)
This work proposes Quasar-ViT, a hardware-oriented quantization-aware architecture search framework for ViTs.
arXiv Detail & Related papers (2024-07-25T16:35:46Z) - Low-complexity Multidimensional DCT Approximations [0.0]
Several multiplierless $8times 8times 8$ approximate methods are proposed and the computational complexity is discussed for the general multidimensional case.
The proposed approximations were embedded into 3D DCT-based video coding scheme and a modified quantization step was introduced.
The simulation results showed that the approximate 3D DCT coding methods offer almost identical output visual quality when compared with exact 3D DCT scheme.
arXiv Detail & Related papers (2023-06-20T17:55:48Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
We present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder.
Our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods.
arXiv Detail & Related papers (2022-10-23T00:32:04Z) - DCT Approximations Based on Chen's Factorization [0.17205106391379021]
Two 8-point multiplication-free DCT approximations are proposed and their fast algorithms are also derived.
Experiments with a JPEG-like image compression scheme are performed and results are compared with competing methods.
New sets of transformations are embedded into an HEVC reference software to provide a fully HEVC-compliant video coding scheme.
arXiv Detail & Related papers (2022-07-24T02:31:28Z) - Neighbor Correspondence Matching for Flow-based Video Frame Synthesis [90.14161060260012]
We introduce a neighbor correspondence matching (NCM) algorithm for flow-based frame synthesis.
NCM is performed in a current-frame-agnostic fashion to establish multi-scale correspondences in the spatial-temporal neighborhoods of each pixel.
coarse-scale module is designed to leverage neighbor correspondences to capture large motion, while the fine-scale module is more efficient to speed up the estimation process.
arXiv Detail & Related papers (2022-07-14T09:17:00Z) - Deep Learning-Based Intra Mode Derivation for Versatile Video Coding [65.96100964146062]
An intelligent intra mode derivation method is proposed in this paper, termed as Deep Learning based Intra Mode Derivation (DLIMD)
The architecture of DLIMD is developed to adapt to different quantization parameter settings and variable coding blocks including non-square ones.
The proposed method can achieve 2.28%, 1.74%, and 2.18% bit rate reduction on average for Y, U, and V components on the platform of Versatile Video Coding (VVC) test model.
arXiv Detail & Related papers (2022-04-08T13:23:59Z) - A Multiparametric Class of Low-complexity Transforms for Image and Video
Coding [0.0]
We introduce a new class of low-complexity 8-point DCT approximations based on a series of works published by Bouguezel, Ahmed and Swamy.
We show that the optimal DCT approximations present compelling results in terms of coding efficiency and image quality metrics.
arXiv Detail & Related papers (2020-06-19T21:56:58Z) - On the Encoder-Decoder Incompatibility in Variational Text Modeling and
Beyond [82.18770740564642]
Variational autoencoders (VAEs) combine latent variables with amortized variational inference.
We observe the encoder-decoder incompatibility that leads to poor parameterizations of the data manifold.
We propose Coupled-VAE, which couples a VAE model with a deterministic autoencoder with the same structure.
arXiv Detail & Related papers (2020-04-20T10:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.