Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity
- URL: http://arxiv.org/abs/2410.15244v1
- Date: Sun, 20 Oct 2024 01:20:35 GMT
- Title: Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity
- Authors: A. P. Radünz, L. Portella, R. S. Oliveira, F. M. Bayer, R. J. Cintra,
- Abstract summary: The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Loeve transform (KLT)
We introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms.
Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost.
- Score: 0.0
- License:
- Abstract: The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Lo\`eve transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.
Related papers
- Variable-size Symmetry-based Graph Fourier Transforms for image compression [65.7352685872625]
We propose a new family of Symmetry-based Graph Fourier Transforms of variable sizes into a coding framework.
Our proposed algorithm generates symmetric graphs on the grid by adding specific symmetrical connections between nodes.
Experiments show that SBGFTs outperform the primary transforms integrated in the explicit Multiple Transform Selection.
arXiv Detail & Related papers (2024-11-24T13:00:44Z) - Fast Data-independent KLT Approximations Based on Integer Functions [0.0]
The Karhunen-Loeve transform (KLT) stands as a well-established discrete transform, demonstrating optimal characteristics in data decorrelation and dimensionality reduction.
This paper introduces a category of low-complexity, data-independent KLT approximations, employing a range of round-off functions.
The proposed transforms perform well when compared to the exact KLT and approximations considering classical performance measures.
arXiv Detail & Related papers (2024-10-11T20:05:05Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Low-Complexity Loeffler DCT Approximations for Image and Video Coding [0.0]
This paper introduces a matrix parametrization method based on the Loeffler discrete cosine transform (DCT) algorithm.
A new class of eight-point DCT approximations was proposed, capable of unifying the mathematical formalism of several eight-point DCT approximations.
arXiv Detail & Related papers (2022-07-29T03:56:18Z) - DCT Approximations Based on Chen's Factorization [0.17205106391379021]
Two 8-point multiplication-free DCT approximations are proposed and their fast algorithms are also derived.
Experiments with a JPEG-like image compression scheme are performed and results are compared with competing methods.
New sets of transformations are embedded into an HEVC reference software to provide a fully HEVC-compliant video coding scheme.
arXiv Detail & Related papers (2022-07-24T02:31:28Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
We present a hybrid model-based / data-driven approach to encode an intra-prediction residual block.
The first $K$ eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST) for stability.
Using WebP as a baseline image, experimental results show that our hybrid graph transform achieved better energy compaction than default discrete cosine transform (DCT) and better stability than KLT.
arXiv Detail & Related papers (2022-03-02T15:36:44Z) - Low-complexity Rounded KLT Approximation for Image Compression [0.0]
The Karhunen-Loeve transform (KLT) is often used for data decorrelation and dimensionality reduction.
The use of the KLT in real-time applications is severely constrained by the difficulty in developing fast algorithms to implement it.
This paper proposes a new class of low-complexity transforms that are obtained through the application of the round function to the elements of the KLT matrix.
arXiv Detail & Related papers (2021-11-28T21:25:35Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
We propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization.
We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:13:07Z) - A Multiparametric Class of Low-complexity Transforms for Image and Video
Coding [0.0]
We introduce a new class of low-complexity 8-point DCT approximations based on a series of works published by Bouguezel, Ahmed and Swamy.
We show that the optimal DCT approximations present compelling results in terms of coding efficiency and image quality metrics.
arXiv Detail & Related papers (2020-06-19T21:56:58Z) - Region adaptive graph fourier transform for 3d point clouds [51.193111325231165]
We introduce the Region Adaptive Graph Fourier Transform (RA-GFT) for compression of 3D point cloud attributes.
The RA-GFT achieves better complexity-performance trade-offs than previous approaches.
arXiv Detail & Related papers (2020-03-04T02:47:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.