Leveraging Explanations in Interactive Machine Learning: An Overview
- URL: http://arxiv.org/abs/2207.14526v1
- Date: Fri, 29 Jul 2022 07:46:11 GMT
- Title: Leveraging Explanations in Interactive Machine Learning: An Overview
- Authors: Stefano Teso, \"Oznur Alkan, Wolfang Stammer, Elizabeth Daly
- Abstract summary: Explanations have gained an increasing level of interest in the AI and Machine Learning (ML) communities.
This paper presents an overview of research where explanations are combined with interactive capabilities.
- Score: 10.284830265068793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explanations have gained an increasing level of interest in the AI and
Machine Learning (ML) communities in order to improve model transparency and
allow users to form a mental model of a trained ML model. However, explanations
can go beyond this one way communication as a mechanism to elicit user control,
because once users understand, they can then provide feedback. The goal of this
paper is to present an overview of research where explanations are combined
with interactive capabilities as a mean to learn new models from scratch and to
edit and debug existing ones. To this end, we draw a conceptual map of the
state-of-the-art, grouping relevant approaches based on their intended purpose
and on how they structure the interaction, highlighting similarities and
differences between them. We also discuss open research issues and outline
possible directions forward, with the hope of spurring further research on this
blooming research topic.
Related papers
- Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Interaction as Explanation: A User Interaction-based Method for Explaining Image Classification Models [1.3597551064547502]
In computer vision, explainable AI (xAI) methods seek to mitigate the 'black-box' problem.
Traditional xAI methods concentrate on visualizing input features that influence model predictions.
We present an interaction-based xAI method that enhances user comprehension of image classification models through their interaction.
arXiv Detail & Related papers (2024-04-15T14:26:00Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - AttentionViz: A Global View of Transformer Attention [60.82904477362676]
We present a new visualization technique designed to help researchers understand the self-attention mechanism in transformers.
The main idea behind our method is to visualize a joint embedding of the query and key vectors used by transformer models to compute attention.
We create an interactive visualization tool, AttentionViz, based on these joint query-key embeddings.
arXiv Detail & Related papers (2023-05-04T23:46:49Z) - Explanation as a process: user-centric construction of multi-level and
multi-modal explanations [0.34410212782758043]
We present a process-based approach that combines multi-level and multi-modal explanations.
We use Inductive Logic Programming, an interpretable machine learning approach, to learn a comprehensible model.
arXiv Detail & Related papers (2021-10-07T19:26:21Z) - Counterfactual Explanations for Machine Learning: A Review [5.908471365011942]
We review and categorize research on counterfactual explanations in machine learning.
Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries.
arXiv Detail & Related papers (2020-10-20T20:08:42Z) - DECE: Decision Explorer with Counterfactual Explanations for Machine
Learning Models [36.50754934147469]
We exploit the potential of counterfactual explanations to understand and explore the behavior of machine learning models.
We design DECE, an interactive visualization system that helps understand and explore a model's decisions on individual instances and data subsets.
arXiv Detail & Related papers (2020-08-19T09:44:47Z) - The Grammar of Interactive Explanatory Model Analysis [7.812073412066698]
We show how different Explanatory Model Analysis (EMA) methods complement each other.
We formalize the grammar of IEMA to describe potential human-model dialogues.
IEMA is implemented in a widely used human-centered open-source software framework.
arXiv Detail & Related papers (2020-05-01T17:12:22Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.