Exploring integrability-chaos transition with a sequence of independent
perturbations
- URL: http://arxiv.org/abs/2208.00039v2
- Date: Sat, 14 Jan 2023 11:45:04 GMT
- Title: Exploring integrability-chaos transition with a sequence of independent
perturbations
- Authors: Vladimir A. Yurovsky (School of Chemistry, Tel Aviv University)
- Abstract summary: Even if all but one particle are fixed in generic positions, the excited states of the moving particle are chaotic.
The effect can be observed in experiments with photons or cold atoms as the decay of observable fluctuation variance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A gas of interacting particles is a paradigmatic example of chaotic systems.
It is shown here that even if all but one particle are fixed in generic
positions, the excited states of the moving particle are chaotic. They are
characterized by the number of principal components (NPC) -- the number of
integrable system eigenstates involved into the non-integrable one, which
increases linearly with the number of strong scatterers. This rule is a
particular case of the general effect of an additional perturbation on the
system chaotic properties. The perturbation independence criteria supposing the
system chaoticity increase are derived here as well. The effect can be observed
in experiments with photons or cold atoms as the decay of observable
fluctuation variance, which is inversely proportional to NPC, and, therefore,
to the number of scatterers. This decay indicates that the eigenstate
thermalization is approached. The results are confirmed by numerical
calculations for a harmonic waveguide with zero-range scatterers along its
axis.
Related papers
- Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.
These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.
We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Deep learning probability flows and entropy production rates in active matter [15.238808518078567]
We develop a deep learning framework to estimate the score of a high-dimensional probability density.
To represent the score, we introduce a novel, spatially-local transformer network architecture.
We show that a single network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram.
arXiv Detail & Related papers (2023-09-22T16:44:18Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition [15.907303576427644]
We focus on the many-body eigenstates across a localization-delocalization phase transition.
In the ergodic phase, the average of eigenstate overlaps $barmathcalO$ is exponential decay with the increase of the system size.
For localized systems, $barmathcalO$ is almost size-independent showing the strong robustness of the eigenstates.
arXiv Detail & Related papers (2020-05-19T10:19:52Z) - Adiabatic eigenstate deformations as a sensitive probe for quantum chaos [0.0]
We show that the norm of the adiabatic gauge potential serves as a much more sensitive measure of quantum chaos.
We are able to detect transitions from non-ergodic to ergodic behavior at perturbation strengths orders of magnitude smaller than those required for standard measures.
arXiv Detail & Related papers (2020-04-10T14:13:18Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.