Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition
- URL: http://arxiv.org/abs/2005.09350v2
- Date: Thu, 30 Jul 2020 03:20:13 GMT
- Title: Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition
- Authors: Zi-Yong Ge, Heng Fan
- Abstract summary: We focus on the many-body eigenstates across a localization-delocalization phase transition.
In the ergodic phase, the average of eigenstate overlaps $barmathcalO$ is exponential decay with the increase of the system size.
For localized systems, $barmathcalO$ is almost size-independent showing the strong robustness of the eigenstates.
- Score: 15.907303576427644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the many-body eigenstates across a localization-delocalization
phase transition. To characterize the robustness of the eigenstates, we
introduce the eigenstate overlaps $\mathcal{O}$ with respect to the different
boundary conditions. In the ergodic phase, the average of eigenstate overlaps
$\bar{\mathcal{O}}$ is exponential decay with the increase of the system size
indicating the fragility of its eigenstates, and this can be considered as an
eigenstate-version butterfly effect of the chaotic systems. For localized
systems, $\bar{\mathcal{O}}$ is almost size-independent showing the strong
robustness of the eigenstates and the broken of eigenstate thermalization
hypothesis. In addition, we find that the response of eigenstates to the change
of boundary conditions in many-body localized systems is identified with the
single-particle wave functions in Anderson localized systems. This indicates
that the eigenstates of the many-body localized systems, as the many-body wave
functions, may be independent of each other. We demonstrate that this is
consistent with the existence of a large number of quasilocal integrals of
motion in the many-body localized phase. Our results provide a new method to
study localized and delocalized systems from the perspective of eigenstates.
Related papers
- Localization transitions in quadratic systems without quantum chaos [0.0]
We study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space to localization in position space.
We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it.
Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
arXiv Detail & Related papers (2024-10-07T14:29:32Z) - Diagnosing non-Hermitian Many-Body Localization and Quantum Chaos via Singular Value Decomposition [0.0]
Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized eigenstates.
This is accompanied by distinct spectral statistics: chaotic for the delocalized phase and integrable for the localized phase.
We ask whether random dissipation (without random disorder) can induce chaotic or localized behavior in an otherwise integrable system.
arXiv Detail & Related papers (2023-11-27T19:00:01Z) - Many-body Localization in Clean Chains with Long-Range Interactions [2.538209532048867]
Author numerically investigates thermalization and many-body localization in translational invariant quantum chains.
The long-time dynamics is dominated by the homogeneity eigenstates and eventually reach degenerate in real space.
On the other hand, the entanglement entropy exhibits the size-dependence beyond the area law for the same reason, even deep in the localized state.
arXiv Detail & Related papers (2023-06-19T04:06:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization control born of intertwined quasiperiodicity and
non-Hermiticity [0.0]
We show for the first time that the intertwined quasiperiodicity and non-Hermiticity can give rise to striking effects.
In particular, we explore the wave function localization character in the Aubry-Andre-Fibonacci (AAF) model.
arXiv Detail & Related papers (2022-11-25T19:00:05Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Delocalization of topological edge states [0.0]
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at system's boundaries.
This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other.
arXiv Detail & Related papers (2021-03-08T09:13:48Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.