Enhanced gradient-based MCMC in discrete spaces
- URL: http://arxiv.org/abs/2208.00040v1
- Date: Fri, 29 Jul 2022 18:48:49 GMT
- Title: Enhanced gradient-based MCMC in discrete spaces
- Authors: Benjamin Rhodes and Michael Gutmann
- Abstract summary: We introduce several discrete Metropolis-Hastings samplers that are conceptually-inspired by MALA.
We demonstrate their strong empirical performance across a range of challenging sampling problems in Bayesian inference and energy-based modelling.
- Score: 2.7158841992922875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent introduction of gradient-based MCMC for discrete spaces holds
great promise, and comes with the tantalising possibility of new discrete
counterparts to celebrated continuous methods such as MALA and HMC. Towards
this goal, we introduce several discrete Metropolis-Hastings samplers that are
conceptually-inspired by MALA, and demonstrate their strong empirical
performance across a range of challenging sampling problems in Bayesian
inference and energy-based modelling. Methodologically, we identify why
discrete analogues to preconditioned MALA are generally intractable, motivating
us to introduce a new kind of preconditioning based on auxiliary variables and
the `Gaussian integral trick'.
Related papers
- Repelling-Attracting Hamiltonian Monte Carlo [0.8158530638728501]
We propose a variant of Hamiltonian Monte Carlo, called the Repelling-Attracting Hamiltonian Monte Carlo (RAHMC)
RAHMC involves two stages: a mode-repelling stage to encourage the sampler to move away from regions of high probability density; and, a mode-attracting stage, which facilitates the sampler to find and settle near alternative modes.
arXiv Detail & Related papers (2024-03-07T15:54:55Z) - ClusterDDPM: An EM clustering framework with Denoising Diffusion
Probabilistic Models [9.91610928326645]
Denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models.
In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs.
In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors.
arXiv Detail & Related papers (2023-12-13T10:04:06Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
Common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress.
We introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it.
arXiv Detail & Related papers (2023-10-05T00:23:34Z) - Chebyshev Particles [0.0]
We are first to consider the posterior distribution of the objective as a mapping of samples in an infinite-dimensional Euclidean space.
We propose a new criterion by maximizing the weighted Riesz polarization quantity, to discretize rectifiable submanifolds via pairwise interaction.
We have achieved high performance from the experiments for parameter inference in a linear state-space model with synthetic data and a non-linear volatility model with real-world data.
arXiv Detail & Related papers (2023-09-10T16:40:30Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
We propose a new method for inference in Bayesian GPSSMs.
Our method is based on freeform variational inference via inducing Hamiltonian Monte Carlo.
We show that our approach can learn transition dynamics and latent states more accurately than competing methods.
arXiv Detail & Related papers (2023-02-20T11:34:16Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
We prove the first high-probability results with logarithmic dependence on the confidence level for methods for solving monotone and structured non-monotone VIPs.
Our results match the best-known ones in the light-tails case and are novel for structured non-monotone problems.
In addition, we numerically validate that the gradient noise of many practical formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
arXiv Detail & Related papers (2022-06-02T15:21:55Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
We show that this approach outperforms generic samplers in a number of difficult settings.
We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data.
arXiv Detail & Related papers (2021-02-08T20:08:50Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - MMCGAN: Generative Adversarial Network with Explicit Manifold Prior [78.58159882218378]
We propose to employ explicit manifold learning as prior to alleviate mode collapse and stabilize training of GAN.
Our experiments on both the toy data and real datasets show the effectiveness of MMCGAN in alleviating mode collapse, stabilizing training, and improving the quality of generated samples.
arXiv Detail & Related papers (2020-06-18T07:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.