RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation
- URL: http://arxiv.org/abs/2208.00237v1
- Date: Sat, 30 Jul 2022 14:45:20 GMT
- Title: RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation
- Authors: Ruida Zhang, Yan Di, Zhiqiang Lou, Fabian Manhardt, Nassir Navab,
Federico Tombari, Xiangyang Ji
- Abstract summary: Category-level object pose estimation aims to predict the 6D pose as well as the 3D metric size of arbitrary objects from a known set of categories.
Recent methods harness shape prior adaptation to map the observed point cloud into the canonical space and apply Umeyama algorithm to recover the pose and size.
We propose a novel geometry-guided Residual Object Bounding Box Projection network RBP-Pose that jointly predicts object pose and residual vectors.
- Score: 103.74918834553247
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Category-level object pose estimation aims to predict the 6D pose as well as
the 3D metric size of arbitrary objects from a known set of categories. Recent
methods harness shape prior adaptation to map the observed point cloud into the
canonical space and apply Umeyama algorithm to recover the pose and size.
However, their shape prior integration strategy boosts pose estimation
indirectly, which leads to insufficient pose-sensitive feature extraction and
slow inference speed. To tackle this problem, in this paper, we propose a novel
geometry-guided Residual Object Bounding Box Projection network RBP-Pose that
jointly predicts object pose and residual vectors describing the displacements
from the shape-prior-indicated object surface projections on the bounding box
towards the real surface projections. Such definition of residual vectors is
inherently zero-mean and relatively small, and explicitly encapsulates spatial
cues of the 3D object for robust and accurate pose regression. We enforce
geometry-aware consistency terms to align the predicted pose and residual
vectors to further boost performance.
Related papers
- UNOPose: Unseen Object Pose Estimation with an Unposed RGB-D Reference Image [86.7128543480229]
We present a novel approach and benchmark, termed UNOPose, for unseen one-reference-based object pose estimation.
Building upon a coarse-to-fine paradigm, UNOPose constructs an SE(3)-invariant reference frame to standardize object representation.
We recalibrate the weight of each correspondence based on its predicted likelihood of being within the overlapping region.
arXiv Detail & Related papers (2024-11-25T05:36:00Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - CATRE: Iterative Point Clouds Alignment for Category-level Object Pose
Refinement [52.41884119329864]
Category-level object pose and size refiner CATRE is able to iteratively enhance pose estimate from point clouds to produce accurate results.
Our approach remarkably outperforms state-of-the-art methods on REAL275, CAMERA25, and LM benchmarks up to a speed of 85.32Hz.
arXiv Detail & Related papers (2022-07-17T05:55:00Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z) - GPV-Pose: Category-level Object Pose Estimation via Geometry-guided
Point-wise Voting [103.74918834553249]
GPV-Pose is a novel framework for robust category-level pose estimation.
It harnesses geometric insights to enhance the learning of category-level pose-sensitive features.
It produces superior results to state-of-the-art competitors on common public benchmarks.
arXiv Detail & Related papers (2022-03-15T13:58:50Z) - Optimal Pose and Shape Estimation for Category-level 3D Object
Perception [24.232254155643574]
category-level perception problem, where one is given 3D sensor data picturing an object of a given category.
We provide the first certifiably optimal CAD solver for pose and shape estimation.
We also develop the first graph-theoretic formulation to prune outliers in category-level perception.
arXiv Detail & Related papers (2021-04-16T21:41:29Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.