Strong kinetic-inductance Kerr nonlinearity with titanium nitride
nanowires
- URL: http://arxiv.org/abs/2208.00317v1
- Date: Sat, 30 Jul 2022 22:09:16 GMT
- Title: Strong kinetic-inductance Kerr nonlinearity with titanium nitride
nanowires
- Authors: Chaitali Joshi, Wenyuan Chen, Henry G. LeDuc, Peter K. Day, and
Mohammad Mirhosseini
- Abstract summary: We study a means of magnifying KI nonlinearity by confining the current density of resonant electromagnetic modes in nanowires.
With improved design, our devices are expected to approach the regime of strong quantum nonlinearity in the millimeter-wave spectrum.
- Score: 1.0928470926399563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thin films of disordered superconductors such as titanium nitride (TiN)
exhibit large kinetic inductance (KI), high critical temperature, and large
quality factors at the single-photon level. KI nonlinearity can be exploited as
an alternative to Josephson junctions for creating novel nonlinear quantum
devices with the potential to operate at higher frequencies and at elevated
temperatures. We study a means of magnifying KI nonlinearity by confining the
current density of resonant electromagnetic modes in nanowires with a small
volume $V \simeq 10^{-4}\text{um}^3$. Using this concept, we realize
microwave-frequency Kerr cavities with a maximum Kerr-shift per photon of
$K/2\pi = 123.5 \pm 3$ kHz and report a nonlinearity-to-linewidth ratio
$K/\gamma = 21\%$. With improved design, our devices are expected to approach
the regime of strong quantum nonlinearity in the millimeter-wave spectrum.
Related papers
- Extracting the current-phase-relation of a monolithic three-dimensional
nano-constriction using a DC-current-tunable superconducting microwave cavity [0.0]
We present a niobium microwave cavity with a monolithically integrated, neon-ion-beam patterned 3D nano-constriction.
By design, we obtain a DC-current-tunable microwave circuit and characterize how the bias-current-dependent constriction properties impact the cavity resonance.
Our platform provides a useful method to comprehensively characterize nonlinear elements integrated in microwave circuits.
arXiv Detail & Related papers (2024-02-15T19:02:49Z) - Weak Kerr Nonlinearity Boosts the Performance of Frequency-Multiplexed
Photonic Extreme Learning Machines: A Multifaceted Approach [49.1574468325115]
We investigate the Kerr nonlinearity impact on the performance of a frequency-multiplexed Extreme Learning Machine (ELM)
The Kerr nonlinearity facilitates the randomized neuron connections allowing for efficient information mixing.
We introduce a model to show that, in frequency-multiplexed ELMs, the Kerr nonlinearity mixes information via four-wave mixing, rather than via self- or cross-phase modulation.
arXiv Detail & Related papers (2023-12-19T16:18:59Z) - Junction-free microwave two-mode radiation from a kinetic inductance
nanowire [0.3413711585591077]
We show the generation of two-mode squeezed states via four-wave-mixing in a superconducting nanowire resonator patterned from NbN.
Our microwave parametric sources based on kinetic inductance promise an expanded range of potential applications.
arXiv Detail & Related papers (2023-08-04T02:10:44Z) - Characterizing Niobium Nitride Superconducting Microwave Coplanar
Waveguide Resonator Array for Circuit Quantum Electrodynamics in Extreme
Conditions [1.2627743222524832]
Niobium nitride (NbN) is a promising material for applications in superconducting quantum technology.
NbN-based devices and circuits are sensitive to decoherence sources such as two-level system (TLS) defects.
We numerically and experimentally investigate NbN superconducting microwave coplanar waveguide resonator arrays.
arXiv Detail & Related papers (2023-06-04T13:24:51Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - In situ control of integrated Kerr nonlinearity [2.773426016230597]
Kerr nonlinearity in nanophotonic cavities provides a versatile platform to explore fundamental physical sciences.
We report the in situ control of integrated Kerr nonlinearity through its interplay with the cascaded Pockels nonlinear process.
arXiv Detail & Related papers (2021-11-30T21:48:20Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.