Extracting the current-phase-relation of a monolithic three-dimensional
nano-constriction using a DC-current-tunable superconducting microwave cavity
- URL: http://arxiv.org/abs/2402.10276v1
- Date: Thu, 15 Feb 2024 19:02:49 GMT
- Title: Extracting the current-phase-relation of a monolithic three-dimensional
nano-constriction using a DC-current-tunable superconducting microwave cavity
- Authors: Kevin Uhl, Daniel Hackenbeck, Dieter Koelle, Reinhold Kleiner, and
Daniel Bothner
- Abstract summary: We present a niobium microwave cavity with a monolithically integrated, neon-ion-beam patterned 3D nano-constriction.
By design, we obtain a DC-current-tunable microwave circuit and characterize how the bias-current-dependent constriction properties impact the cavity resonance.
Our platform provides a useful method to comprehensively characterize nonlinear elements integrated in microwave circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting circuits with nonlinear elements such as Josephson tunnel
junctions or kinetic inductance nanowires are the workhorse for microwave
quantum and superconducting sensing technologies. For devices, which can be
operated at high temperatures and large magnetic fields, nano-constrictions as
nonlinear elements are recently under intense investigation. Constrictions,
however, are far less understood than conventional Josephson tunnel junctions,
and their current-phase-relationships (CPRs) -- although highly important for
device design -- are hard to predict. Here, we present a niobium microwave
cavity with a monolithically integrated, neon-ion-beam patterned
three-dimensional (3D) nano-constriction. By design, we obtain a
DC-current-tunable microwave circuit and characterize how the
bias-current-dependent constriction properties impact the cavity resonance.
Based on the results of these experiments, we reconstruct the CPR of the
nanoconstriction. Finally, we discuss the Kerr nonlinearity of the device, a
parameter important for many high-dynamic-range applications and an
experimental probe for the second and third derivatives of the CPR. Our
platform provides a useful method to comprehensively characterize nonlinear
elements integrated in microwave circuits and could be of interest for current
sensors, hybrid quantum systems and parametric amplifiers. Our findings
furthermore contribute to a better understanding of nano-fabricated 3D
constrictions.
Related papers
- Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement [26.69408771617283]
We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3.
We observe that SQUIDs exhibit a pronounced second-order harmonic component sin(2phi) in the current-phase relation.
We conclude that the existence of the pi-phase is in favor of the p-wave pairing symmetry in K2Cr3As3.
arXiv Detail & Related papers (2024-08-14T07:34:45Z) - Junction-free microwave two-mode radiation from a kinetic inductance
nanowire [0.3413711585591077]
We show the generation of two-mode squeezed states via four-wave-mixing in a superconducting nanowire resonator patterned from NbN.
Our microwave parametric sources based on kinetic inductance promise an expanded range of potential applications.
arXiv Detail & Related papers (2023-08-04T02:10:44Z) - Niobium Quantum Interference Microwave Circuits with Monolithic
Three-Dimensional (3D) Nanobridge Junctions [0.0]
We present the realization of superconducting niobium microwave resonators with integrated, three-dimensional (3D) nanobridge-based superconducting quantum interference devices.
Results reveal great potential for application of these circuits in hybrid systems with e.g. magnons and spin ensembles or in flux-mediated optomechanics.
arXiv Detail & Related papers (2023-05-25T17:31:49Z) - In-situ amplification of spin echoes within a kinetic inductance
parametric amplifier [0.0]
Superconducting micro-resonators in combination with quantum-limited Josephson parametric amplifiers lead to more than four orders of magnitude improvement in sensitivity of pulsed Electron Spin Resonance (ESR) measurements.
We present a technique for coupling an ensemble of spins directly to a weakly nonlinear microwave resonator, which is engineered from a magnetic field-resilient thin superconducting film.
We perform pulsed ESR measurements with a $1$pL effective mode volume and amplify the resulting spin signal using the same device, achieving a sensitivity of $2.8 times 103$ spins in a single-shot Hahn echo measurement at a temperature of 400
arXiv Detail & Related papers (2022-11-21T10:36:41Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.