Motion-aware Memory Network for Fast Video Salient Object Detection
- URL: http://arxiv.org/abs/2208.00946v2
- Date: Sun, 31 Dec 2023 07:43:10 GMT
- Title: Motion-aware Memory Network for Fast Video Salient Object Detection
- Authors: Xing Zhao, Haoran Liang, Peipei Li, Guodao Sun, Dongdong Zhao, Ronghua
Liang and Xiaofei He
- Abstract summary: We design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD.
In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames.
In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches.
The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
- Score: 15.967509480432266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous methods based on 3DCNN, convLSTM, or optical flow have achieved
great success in video salient object detection (VSOD). However, they still
suffer from high computational costs or poor quality of the generated saliency
maps. To solve these problems, we design a space-time memory (STM)-based
network, which extracts useful temporal information of the current frame from
adjacent frames as the temporal branch of VSOD. Furthermore, previous methods
only considered single-frame prediction without temporal association. As a
result, the model may not focus on the temporal information sufficiently. Thus,
we initially introduce object motion prediction between inter-frame into VSOD.
Our model follows standard encoder--decoder architecture. In the encoding
stage, we generate high-level temporal features by using high-level features
from the current and its adjacent frames. This approach is more efficient than
the optical flow-based methods. In the decoding stage, we propose an effective
fusion strategy for spatial and temporal branches. The semantic information of
the high-level features is used to fuse the object details in the low-level
features, and then the spatiotemporal features are obtained step by step to
reconstruct the saliency maps. Moreover, inspired by the boundary supervision
commonly used in image salient object detection (ISOD), we design a
motion-aware loss for predicting object boundary motion and simultaneously
perform multitask learning for VSOD and object motion prediction, which can
further facilitate the model to extract spatiotemporal features accurately and
maintain the object integrity. Extensive experiments on several datasets
demonstrated the effectiveness of our method and can achieve state-of-the-art
metrics on some datasets. The proposed model does not require optical flow or
other preprocessing, and can reach a speed of nearly 100 FPS during inference.
Related papers
- Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
We introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information.
We have conducted experiments on the aggregation and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance.
arXiv Detail & Related papers (2024-09-06T16:29:04Z) - Adaptive Multi-source Predictor for Zero-shot Video Object Segmentation [68.56443382421878]
We propose a novel adaptive multi-source predictor for zero-shot video object segmentation (ZVOS)
In the static object predictor, the RGB source is converted to depth and static saliency sources, simultaneously.
Experiments show that the proposed model outperforms the state-of-the-art methods on three challenging ZVOS benchmarks.
arXiv Detail & Related papers (2023-03-18T10:19:29Z) - Motion-inductive Self-supervised Object Discovery in Videos [99.35664705038728]
We propose a model for processing consecutive RGB frames, and infer the optical flow between any pair of frames using a layered representation.
We demonstrate superior performance over previous state-of-the-art methods on three public video segmentation datasets.
arXiv Detail & Related papers (2022-10-01T08:38:28Z) - PTSEFormer: Progressive Temporal-Spatial Enhanced TransFormer Towards
Video Object Detection [28.879484515844375]
We introduce a progressive way to introduce both temporal information and spatial information for an integrated enhancement.
PTSEFormer follows an end-to-end fashion to avoid heavy post-processing procedures while achieving 88.1% mAP on the ImageNet VID dataset.
arXiv Detail & Related papers (2022-09-06T06:32:57Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
We introduce a novel recurrent encoding-decoding neural network architecture for event-based optical flow estimation.
The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset.
We have shown that it outperforms all the existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-09-10T13:37:37Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Fast Video Salient Object Detection via Spatiotemporal Knowledge
Distillation [20.196945571479002]
We present a lightweight network tailored for video salient object detection.
Specifically, we combine a saliency guidance embedding structure and spatial knowledge distillation to refine the spatial features.
In the temporal aspect, we propose a temporal knowledge distillation strategy, which allows the network to learn the robust temporal features.
arXiv Detail & Related papers (2020-10-20T04:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.